Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jul;31(7):1191-8.

A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier

Affiliations
  • PMID: 2362198
Free article

A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier

K Fujimori et al. J Nucl Med. 1990 Jul.
Free article

Abstract

For successful use of radiolabeled monoclonal antibodies (MAbs) for diagnosis and therapy, it is helpful to understand both global and microscopic aspects of antibody biodistribution. In this study, antibody distribution in a tumor is simulated by splicing together information on global pharmacokinetics: transport across the capillary wall, diffusive penetration through the tumor interstitial space, and antigen-antibody interaction. The geometry simulated corresponds to spherical nodules of densely packed tumor cells. This modeling analysis demonstrates that: 1) antigen-antibody binding in tumors can retard antibody percolation; 2) high antibody affinity at a given dose tends to decrease antibody percolation because there are fewer free antibody molecules. The result is a more heterogeneous distribution; 3) the average antibody concentration in the tumor does not increase linearly with affinity; and 4) increasing antibody dose leads to better percolation and more uniform distribution. This mathematical model and the general principles developed here can be applied as well to other biologic ligands.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources