Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Sep;62(9):3268-74.
doi: 10.2337/db13-0159. Epub 2013 Apr 29.

Cord serum lipidome in prediction of islet autoimmunity and type 1 diabetes

Affiliations

Cord serum lipidome in prediction of islet autoimmunity and type 1 diabetes

Matej Oresic et al. Diabetes. 2013 Sep.

Abstract

Previous studies show that children who later progress to type 1 diabetes (T1D) have decreased preautoimmune concentrations of multiple phospholipids as compared with nonprogressors. It is still unclear whether these changes associate with development of β-cell autoimmunity or specifically with clinical T1D. Here, we studied umbilical cord serum lipidome in infants who later developed T1D (N = 33); infants who developed three or four (N = 31) islet autoantibodies, two (N = 31) islet autoantibodies, or one (N = 48) islet autoantibody during the follow-up; and controls (N = 143) matched for sex, HLA-DQB1 genotype, city of birth, and period of birth. The analyses of serum molecular lipids were performed using the established lipidomics platform based on ultra-performance liquid chromatography coupled to mass spectrometry. We found that T1D progressors are characterized by a distinct cord blood lipidomic profile that includes reduced major choline-containing phospholipids, including sphingomyelins and phosphatidylcholines. A molecular signature was developed comprising seven lipids that predicted high risk for progression to T1D with an odds ratio of 5.94 (95% CI, 1.07-17.50). Reduction in choline-containing phospholipids in cord blood therefore is specifically associated with progression to T1D but not with development of β-cell autoimmunity in general.

PubMed Disclaimer

Figures

FIG. 1.
FIG. 1.
Global changes of umbilical cord serum lipidome as related to different T1D-associated outcomes. A: Pairwise Pearson correlation coefficients for LCs and selected clinical variables. For each pair of variables, the correlation coefficients were calculated across all available samples. Categorical variables were annotated as follows: sex (male = 0 and female = 1), HLA risk (medium = 0; high = 1), mode of delivery (vaginal = 0; cesarean delivery = 1), study group (controls = 0; 1 autoantibody = 1; 2 autoantibodies = 2; 3–4 autoantibodies = 3; T1D = 4). Relative concentrations of LC2 are shown in B for all study groups. C: Relative lipid concentrations in T1D progressors and controls across the 10 LCs. The T1D progressors were divided into two subgroups: early autoantibody-positive (age at seroconversion younger than 4 years) and late autoantibody-positive (age at seroconversion older than 4 years). *P < 0.05. Aab, autoantibody; Aab+, antibody-positive during the follow-up.
FIG. 2.
FIG. 2.
Feasibility of cord serum lipids to predict T1D and β-cell autoimmunity in later life. A: Model to predict T1D based on cord serum concentrations of seven lipid metabolites [SM(d18:1/24:1), SM(d18:0/20:0), PC(18:1/20:4), PC(18:0/22:4), PC(38:2), PE(38:2), TG(14:0/16:0/16:0), TG(16:0/16:0/16:0)]. Samples from all T1D progressors and their matched controls were used to develop the model and calculate its characteristics. B: Model to predict β-cell autoimmunity for single autoantibody based on cord serum concentrations of seven lipid metabolites [LPC(22:6), PC(16:0e/16:0), PC(p16:0/16:0), TG(18:0/18:1/18:1), TG(16:0/18:2/20:4), as well as two unidentified lipids from clusters 1 and 5, respectively]. Samples from the one autoantibody group and their matched controls were used to develop the model and calculate its characteristics. Aab, autoantibody.

Comment in

References

    1. Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002;347:911–920 - PubMed
    1. Patterson CC, Dahlquist GG, Gyürüs E, Green A, Soltész G, EURODIAB Study Group . Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005-20: a multicentre prospective registration study. Lancet 2009;373:2027–2033 - PubMed
    1. Knip M, Virtanen SM, Seppä K, et al. Finnish TRIGR Study Group . Dietary intervention in infancy and later signs of beta-cell autoimmunity. N Engl J Med 2010;363:1900–1908 - PMC - PubMed
    1. Achenbach P, Bonifacio E, Koczwara K, Ziegler A-G. Natural history of type 1 diabetes. Diabetes 2005;54(Suppl. 2):S25–S31 - PubMed
    1. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 2008;359:61–73 - PMC - PubMed

Publication types