Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr 22;8(4):e59592.
doi: 10.1371/journal.pone.0059592. Print 2013.

Short-term in-vitro expansion improves monitoring and allows affordable generation of virus-specific T-cells against several viruses for a broad clinical application

Affiliations

Short-term in-vitro expansion improves monitoring and allows affordable generation of virus-specific T-cells against several viruses for a broad clinical application

René Geyeregger et al. PLoS One. .

Abstract

Adenoviral infections are a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT) in pediatric patients. Adoptive transfer of donor-derived human adenovirus (HAdV)-specific T-cells represents a promising treatment option. However, the difficulty in identifying and selecting rare HAdV-specific T-cells, and the short time span between patients at high risk for invasive infection and viremia are major limitations. We therefore developed an IL-15-driven 6 to 12 day short-term protocol for in vitro detection of HAdV-specific T cells, as revealed by known MHC class I multimers and a newly identified adenoviral CD8 T-cell epitope derived from the E1A protein for the frequent HLA-type A*02∶01 and IFN-γ. Using this novel and improved diagnostic approach we observed a correlation between adenoviral load and reconstitution of CD8(+) and CD4(+) HAdV-specific T-cells including central memory cells in HSCT-patients. Adaption of the 12-day protocol to good manufacturing practice conditions resulted in a 2.6-log (mean) expansion of HAdV-specific T-cells displaying high cytolytic activity (4-fold) compared to controls and low or absent alloreactivity. Similar protocols successfully identified and rapidly expanded CMV-, EBV-, and BKV-specific T-cells. Our approach provides a powerful clinical-grade convertible tool for rapid and cost-effective detection and enrichment of multiple virus-specific T-cells that may facilitate broad clinical application.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Frequency of responses to novel and known HAdV peptides by ELIspot.
Frequency of HAdV-specific T-cells in donors before and after short-term in vitro expansion analyzed by multimers and IFNg-CSA. A) Schematic drawing of the IL-2-based in vitro expansion protocol for ELIspot analysis. Percentage of donors responding to novel B) and known C) A*02-based peptides by ELIspot assay. Black bars represent donors positive, gray bars those negative for the respective allele. Significant differences are indicated (*, p>0.05, Fisheŕs exact test). D) Schematic drawing of the IL-15-based in vitro expansion protocol for FACS analysis. E) Percentages of A*02 ADV-streptamer+ T-cells including representative dot plots are given. F) Specific lysis is shown of autologous and allogeneic A*02 mismatched PHA-blasts (target cells), unloaded- or HAdV-A*02 (LLD) peptide-loaded, induced by A*02-multimer-sorted HAdV-T-cells. The total number of “dying” target cells/well and percentage values were evaluated from each sample. Two representative dot plots are shown. G) A*01, A*24, B*07, and B*35 HLA- dependent ADV-specific multimer+ (streptamer or pentamer) T-cells among CD8+ T-cells, before (day0) and after 6 and 12 days of expansion are shown. Notably, for some donors, multimer analyses were only performed at day 0, 6 and/or 12. H) Subgroup C-derived streptamer staining of PBMCs stimulated with specific peptides for 12 days, representing different adenoviral subgroups, as indicated. The percentage of streptamer+ T cells among CD8+ is shown. Asterisks represent subgroup recognition.
Figure 2
Figure 2. Analysis of HAdV-specific T-cells in patients during and after allogeneic SCT.
The presence of 6 day expanded or magnetically isolated HAdV-specific T-cells was assessed by A) the percentage of multimer+ T-cells among CD8+ and by B) events of IFN-γ secreting CD4+ and CD8+ T-cells during HAdV load, or after ADV clearance in 10 patients. Of note, for most patients, either multimer or IFN-γ assays before or after viral load were performed. Each dot refers to the appropriate patient number, as indicated.C) Detailed analysis of ADV-multimer+ T-cells of patient No. 3 and the representative HSC-donor are shown. Dot plots show the percentage of HAdV-multimer+ T-cells among CD8+ at several time points after clearance of HAdV plasma load. For the last two stainings, cells were measured directly ex vivo and after a 12 instead of 6 day expansion period. The graphs show percentage of HAdV-multimer+ T-cells among CD8+ (bold line, rectangle), HAdV copies per ml serum (dotted line, diamond) and number of CD3+ T-cells/µl blood (bold line, diamond). D) A summarizing diagram + SEM (of patients No. 2, 4, 7, 9 and 10) including representative dot plots of magnetically isolated HAdV-streptamer+ T-cells and percentages of their 4 subsets of naïve (N), central (TCM), effector memory (TEM) and effector memory CD45RA+ (TEMRA) T-cells are shown.
Figure 3
Figure 3. Generation and detailed phenotypic analysis of seHAdV-T-cells.
PBMCs (5×106/12 well) were expanded for 12 days using the HAdV peptide pool and IL-15, as described in material and methods. A) The total number of PBMCs after expansion, and B) the absolute number of HAdV-multimer-specific T-cells at days 0 and 12, are shown from 24 donors, including mean +SEM and ranges. C) PBMCs (2.5×106/24 well) were CFSE-labeled without stimulation (unst.), or stimulated with the HAdV-peptide pool in the presence of IL-15, as described in Materials and Methods. A summarizing diagram + SEM of 3 donors shows cell number (x1000) (bars) and percentage (above bars) of viable proliferating cells after expansion including a representative histogram.
Figure 4
Figure 4. Phenotypic analysis of seHAdV-T-cells.
A) Percentage values of different cell populations (as indicated, including cytokine-induced killer cells (CIK)) within PBMCs, before (day 0) and after expansion (day12) of 8 donors. Percentage values of TCM (upper left), Naïve (upper right), TEM (lower left) and TEMRA (lower right) T cell populations within CD8+ (B), CD4+ C), and HAdV-streptamer+ T-cells D) on days 0 (white bars) and 12 (black bars). The graph shows mean+SEM of 8 (for CD4+ and CD8+ T-cells) and 3 (for HAdV-streptamer+ T-cells) donors. Notably, for phenotypic analysis of HAdV-streptamer+ T cells on day 0 (white bars), beads-based magnetic isolation was performed. Representative dot plots are shown.
Figure 5
Figure 5. Alloreactive potential of PBMCs versus expanded control- and seHAdV-specific T-cells.
CFSE-labeled autologous or allogeneic responder cells (PBMCs or seHAdV-T-cells) were mixed 1∶1 with irradiated stimulator cells (PBMCs) and incubated for 7 to 8 days. A) The graph shows the total number of proliferated viable cells per 96 well plate of 14 different donor/recipient combinations A–N). Proliferation of seHAdV-T-cells or PBMCs in response to autologous (auto) or allogeneic (allo) irradiated PBMCs are shown. In addition, representative examples from donors A and J are given. B) A summarizing graph show mean + SEM from all combinations (except for L,M and N); The percentage of viable proliferating seHAdV-T-cells was set to 100% and calculated based on total cell number. C) seHAdV-T-cells or seMAGE-1A-T-cells (control) and PBMC were mixed with allogeneic irradiated stimulator PBMCs. A summarizing graph shows mean + SEM of 4 combinations. First, total cell number of viable proliferating (CFSE-low) seHAdV-, seMAGE-1A-T-cells and PBMCs/well are calculated. Based on these total cell number, the percentage values were analyzed and compared to allogeneic PBMCs, which was set to 100%. A representative histogram of one donor is shown, including percentage values of proliferated cells. Significance vs HAdV-T-cell line: o, p< = 0.07; *, p< = 0.01.***, p< = 0.001.
Figure 6
Figure 6. Functional and cytolytic activity of seHAdV-T-cells.
seHAdV-T-cells were used for the cytotoxic assay. The percentage values of IFN-γ, CD137 and CD107a expressing seHAdV-T-cells among CD4+ and/or CD8+ are shown A–D) as indicated. E) The percentage values of IFN-γ and TNF-α among CD3+ cells are shown, including representative dot plots indicating simultaneous expression. F) Representative dot plots of IFN-γ and TNF-α-expressing CD8+ T-cells including streptamer+ T cells and CD4+ T-cells. G) Specific lysis is shown of autologous and allogeneic PHA-blasts (target cells) matched in only a single MHC I, or in only a single MHC II, unloaded (white bar), HAdV-peptide- (grey bar) or HAdV-peptide pool (black bar)-loaded, induced by seHAdV-T-cells. The total number of “dying” target cells/well was evaluated from each sample. Based on these, a summarizing graph shows the percentage of dying target cells related to unloaded autologous (auto) target cells which is set to 100%. Representative dot plots, indicating “dying” cells/well, are shown. H) Specific lysis of allogeneic, unloaded (white bar) or HAdV-peptide pool (black bar)-loaded target cells induced by post-thaw seHAdV-T-cells. Based on total cell number of dying cells, a summarizing graph shows the percentage of dying target cells related to unloaded target cells, which is set to 100%. Significance vs unloaded autologous targets: ns = not significant, *, p< = 0.01.***, p< = 0.001.

Similar articles

Cited by

References

    1. Lion T, Baumgartinger R, Watzinger F, Matthes-Martin S, Suda M, et al. (2003) Molecular monitoring of adenovirus in peripheral blood after allogeneic bone marrow transplantation permits early diagnosis of disseminated disease. Blood 102: 1114–1120. - PubMed
    1. Gooley TA, Chien JW, Pergam SA, Hingorani S, Sorror ML, et al. (2010) Reduced mortality after allogeneic hematopoietic-cell transplantation. N Engl J Med 363: 2091–2101. - PMC - PubMed
    1. Watcharananan SP, Kiertiburanakul S, Piyatuctsanawong W, Anurathapan U, Sungkanuparph S, et al. (2010) Cytomegalovirus, adenovirus, and polyomavirus co-infection among pediatric recipients of allogeneic stem cell transplantation: characteristics and outcome. Pediatr Transplant 14: 675–681. - PubMed
    1. George D, El-Mallawany NK, Jin Z, Geyer M, Della-Latta P, et al. (2012) Adenovirus infection in paediatric allogeneic stem cell transplantation recipients is a major independent factor for significantly increasing the risk of treatment related mortality. Br J Haematol 156: 99–108. - PubMed
    1. Schilham MW, Claas EC, van Zaane W, Heemskerk B, Vossen JM, et al. (2002) High levels of adenovirus DNA in serum correlate with fatal outcome of adenovirus infection in children after allogeneic stem-cell transplantation. Clin Infect Dis 35: 526–532. - PubMed

Publication types

MeSH terms

Substances