Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr 22;8(4):e62091.
doi: 10.1371/journal.pone.0062091. Print 2013.

In-situ effects of eutrophication and overfishing on physiology and bacterial diversity of the red sea coral Acropora hemprichii

Affiliations

In-situ effects of eutrophication and overfishing on physiology and bacterial diversity of the red sea coral Acropora hemprichii

Christian Jessen et al. PLoS One. .

Erratum in

  • PLoS One. 2013;8(11). doi:10.1371/annotation/be4a3168-5284-4083-b5ed-5cd0f4630823

Abstract

Coral reefs of the Central Red Sea display a high degree of endemism, and are increasingly threatened by anthropogenic effects due to intense local coastal development measures. Overfishing and eutrophication are among the most significant local pressures on these reefs, but there is no information available about their potential effects on the associated microbial community. Therefore, we compared holobiont physiology and 16S-based bacterial communities of tissue and mucus of the hard coral Acropora hemprichii after 1 and 16 weeks of in-situ inorganic nutrient enrichment (via fertilizer diffusion) and/or herbivore exclusion (via caging) in an offshore reef of the Central Red Sea. Simulated eutrophication and/or overfishing treatments did not affect coral physiology with respect to coral respiration rates, chlorophyll a content, zooxanthellae abundance, or δ (15)N isotopic signatures. The bacterial community of A. hemprichii was rich and uneven, and diversity increased over time in all treatments. While distinct bacterial species were identified as a consequence of eutrophication, overfishing, or both, two bacterial species that could be classified to the genus Endozoicomonas were consistently abundant and constituted two thirds of bacteria in the coral. Several nitrogen-fixing and denitrifying bacteria were found in the coral specimens that were exposed to experimentally increased nutrients. However, no particular bacterial species was consistently associated with the coral under a given treatment and the single effects of manipulated eutrophication and overfishing could not predict the combined effect. Our data underlines the importance of conducting field studies in a holobiont framework, taking both, physiological and molecular measures into account.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Inorganic nutrient concentrations.
Shown are concentrations for ambient and enriched treatments of week 1 and week 16 directly above analyzed frames. Panel A depicts concentrations of dissolved inorganic nitrogen (DIN) and panel B the concentrations of soluble reactive phosphate (SRP). Asterisks indicate significance (P<0.05) of single t-tests.
Figure 2
Figure 2. Bacterial taxonomy stack plot on the phylogenetic level of family.
Each color represents each of the 15 most abundant families in all samples. All other taxa are grouped under category others. Bars are plotted according to 1) time (W1 =  week 1, W16 =  week 16), 2) coral mother colony (A, B, C) or water (W), and 3) treatment (CA = cage, FE = fertilizer, CF = cage & fertilizer). Sample W16.A.CF died and was left out of the analysis.
Figure 3
Figure 3. Principal Coordinate Analysis (PCoA) of unweighted UniFrac distances between coral samples.
White symbols represent samples from week 1. Black symbols are samples from week 16. Coral colonies are depicted by the letter preceding the symbol (A, B, C). Circles denote cage, triangles denote fertilizer, and squares denote cage & fertilizer treatments. Percentages given represent the amount of variance explained by the corresponding axis.

Similar articles

Cited by

References

    1. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, et al. (2007) Coral reefs under rapid climate change and ocean acidification. Science 318: 1737–1742. - PubMed
    1. Hughes T, Baird A, Bellwood D, Card M, Connolly S, et al. (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301: 929–933. - PubMed
    1. Hughes T, Rodrigues M, Bellwood D, Ceccarelli D, Hoegh-Guldberg O, et al. (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Current Biology 17: 360–365. - PubMed
    1. Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, et al. (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301: 955–958. - PubMed
    1. Wild C, Hoegh-Guldberg O, Naumann MS, Colombo-Pallotta MF, Ateweberhan M, et al. (2011) Climate change impedes scleractinian corals as primary reef ecosystem engineers. Marine and Freshwater Research 62: 205–215.

MeSH terms

LinkOut - more resources