Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr 22;8(4):e62438.
doi: 10.1371/journal.pone.0062438. Print 2013.

Neonatal disruption of serine racemase causes schizophrenia-like behavioral abnormalities in adulthood: clinical rescue by d-serine

Affiliations

Neonatal disruption of serine racemase causes schizophrenia-like behavioral abnormalities in adulthood: clinical rescue by d-serine

Hiroko Hagiwara et al. PLoS One. .

Abstract

Background: D-Serine, an endogenous co-agonist of the N-methyl-D-aspartate (NMDA) receptor, is synthesized from L-serine by serine racemase (SRR). Given the role of D-serine in both neurodevelopment and the pathophysiology of schizophrenia, we examined whether neonatal disruption of D-serine synthesis by SRR inhibition could induce behavioral abnormalities relevant to schizophrenia, in later life.

Methodology/principal findings: Neonatal mice (7-9 days) were injected with vehicle or phenazine methosulfate (Met-Phen: 3 mg/kg/day), an SRR inhibitor. Behavioral evaluations, such as spontaneous locomotion, novel object recognition test (NORT), and prepulse inhibition (PPI) were performed at juvenile (5-6 weeks old) and adult (10-12 weeks old) stages. In addition, we tested the effects of D-serine on PPI deficits in adult mice after neonatal Met-Phen exposure. Finally, we assessed whether D-serine could prevent the onset of schizophrenia-like behavior in these mice. Neonatal Met-Phen treatment reduced D-serine levels in the brain, 24 hours after the final dose. Additionally, this treatment caused behavioral abnormalities relevant to prodromal symptoms in juveniles and to schizophrenia in adults. A single dose of D-serine improved PPI deficits in adult mice. Interestingly, chronic administration of D-serine (900 mg/kg/day from P35 to P70) significantly prevented the onset of PPI deficits after neonatal Met-Phen exposure.

Conclusions/significance: This study shows that disruption of D-serine synthesis during developmental stages leads to behavioral abnormalities relevant to prodromal symptoms and schizophrenia, in later life. Furthermore, early pharmacological intervention with D-serine may prevent the onset of psychosis in adult.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: Kenji Hashimoto is a member of Editorial Board of PLOS ONE. This does not alter the authors′ adherence to all the PLOS ONE policies on sharing data and materials. The other authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Spontaneous locomotion after neonatal Met-Phen treatment.
Saline (1.0 ml/kg/day) or Met-Phen (3.0 mg/kg/day) was administered i.p. from P7 to P9. Horizontal activity and rearing activity were performed at juvenile (5–6 weeks old) and adult stages (10–12 weeks old). Data represent the mean ± S.E.M. (n = 9 mice for control group, n = 16 for Met-Phen group). ***P<0.001 compared with saline treated group.
Figure 2
Figure 2. Cognition after neonatal Met-Phen treatment.
Saline (1.0 ml/kg/day) or Met-Phen (3.0 mg/kg/day) was administered i.p. from P7 to P9. NORT was performed at juvenile (5–6 weeks old) and adult stages (10–12 weeks old). Data represent the mean ± S.E.M. (n = 8–11 mice for control group, n = 11 or 12 for Met-Phen group). *P<0.05, **P<0.01, *** P<0.001 compared with saline treated group.
Figure 3
Figure 3. Auditory sensory gating PPI deficits after neonatal Met-Phen treatment.
Saline (1.0 ml/kg/day) or Met-Phen (3.0 mg/kg/day) was administered i.p. from P7 to P9. Auditory sensory gating PPI test was performed at juvenile (5–6 weeks old) and adult stages (10–12 weeks old). Data represent the mean ± S.E.M. (n = 11 mice for control group, n = 12 or 13 for Met-Phen group). *P<0.05 compared with saline treated group.
Figure 4
Figure 4. Effects of D-serine on PPI deficits at adult after neonatal Met-Phen treatment.
Met-Phen (3.0 mg/kg/day) was administered i.p. from P7 to P9. PPI test was performed at adult (10–12 weeks old). D-Serine (900 mg/kg, i.p.) or vehicle (saline; 10 ml/kg) was administered 30 minutes before PPI test. Data represent the mean ± S.E.M. (n = 7 mice for control group, n = 12 for D-serine group). *P<0.05, **P<0.01 compared with Met-Phen+vehicle treated group.
Figure 5
Figure 5. Preventive effects of D-serine on PPI deficits at adult after neonatal Met-Phen treatment.
Met-Phen (3.0 mg/kg/day) was administered i.p. from P7 to P9. PPI test was performed at adult (11 weeks old). D-Serine (900 mg/kg/day, i.p.) or vehicle (saline; 10 ml/kg/day, i.p.) was administered chronically from P35 (5 weeks old) to P70 (10 weeks old). PPI test was performed 1 week (P77) after the final administration of D-serine. Data represent the mean ± S.E.M. (n = 5 mice for control group, n = 5 for D-serine group). *P<0.05, **P<0.01, ***P<0.001 compared with Met-Phen+vehicle treated group.

Similar articles

Cited by

References

    1. Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148: 1301–1308. - PubMed
    1. Krystal JH, D’Souza DC, Petrakis IL, Belger A, Berman RM, et al. (1999) NMDA agonists and antagonists as probes of glutamatergic dysfunction and pharmacotherapies in neuropsychiatric disorders. Harv Rev Psychiatry 7: 125–143. - PubMed
    1. Coyle JT, Tsai G (2004) The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia. Psychopharmacology (Berl) 174: 32–38. - PubMed
    1. Javitt DC, Coyle JT (2004) Decoding schizophrenia. Sci Am 290: 48–55. - PubMed
    1. Hashimoto K, Shimizu E, Iyo M (2005) Dysfunction of glia-neuron communication in pathophysiology of schizophrenia. Curr Psychiatry Rev 1: 151–163.

Publication types

MeSH terms