Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr 30;6(273):ra30.1-11, S1-3.
doi: 10.1126/scisignal.2003627.

β-arrestin-dependent activation of the cofilin pathway is required for the scavenging activity of the atypical chemokine receptor D6

Affiliations

β-arrestin-dependent activation of the cofilin pathway is required for the scavenging activity of the atypical chemokine receptor D6

Elena M Borroni et al. Sci Signal. .

Erratum in

  • Sci Signal. 2013 Aug 13;6(288):er5

Abstract

Chemokines promote the recruitment of leukocytes to sites of infection and inflammation by activating conventional heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs). Chemokines are also recognized by a set of atypical chemokine receptors (ACRs), which cannot induce directional cell migration but are required for the generation of chemokine gradients in tissues. ACRs are presently considered "silent receptors" because no G protein-dependent signaling activity is observed after their engagement by cognate ligands. We report that engagement of the ACR D6 by its ligands activates a β-arrestin1-dependent, G protein-independent signaling pathway that results in the phosphorylation of the actin-binding protein cofilin through the Rac1-p21-activated kinase 1 (PAK1)-LIM kinase 1 (LIMK1) cascade. This signaling pathway is required for the increased abundance of D6 protein at the cell surface and for its chemokine-scavenging activity. We conclude that D6 is a signaling receptor that exerts its regulatory function on chemokine-mediated responses in inflammation and immunity through a distinct signaling pathway.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources