Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Jul;22(7):853-62.
doi: 10.1517/13543784.2013.794218. Epub 2013 May 2.

Synthetic anti-lipopolysaccharide peptides and hepatitis C virus infection

Affiliations
Review

Synthetic anti-lipopolysaccharide peptides and hepatitis C virus infection

François Habersetzer et al. Expert Opin Investig Drugs. 2013 Jul.

Abstract

Introduction: Hepatitis C virus (HCV) infection is a leading cause of cirrhosis and hepatocellular carcinoma. Although antiviral therapy has been markedly improved by the licensing of direct-acting antivirals, safety, resistance, high costs and difficult-to-treat patients remain important challenges.

Areas covered: This article focuses and comments on the recent development of synthetic anti-lipopolysaccharide peptides (SALPs) which bind to highly sulfated glycosaminoglycan/heparan sulfate (HS) on cell surface. HS serves as a primary docking site for several viruses to their respective host cells before the viruses interact with their cell surface receptor(s). In vitro studies have shown that SALPs inhibit entry of HCV without cell toxicity.

Expert opinion: SALPs prevent viral infection in cell culture model systems. Treatment studies of established HCV infection in cell culture models as well as proof-of-concept and safety studies in animal models are needed to evaluate their potential for drug development. The mechanism of action of SALPs as entry inhibitors suggests a potential application for HCV-infected patients to prevent reinfection of the liver graft in liver transplantation. Potential limitations may include high doses to obtain an antiviral effect and a target which is widely expressed and has a key function in cell physiology.

PubMed Disclaimer

Similar articles

MeSH terms

LinkOut - more resources