Evolutionary cell biology of chromosome segregation: insights from trypanosomes
- PMID: 23635522
- PMCID: PMC3866873
- DOI: 10.1098/rsob.130023
Evolutionary cell biology of chromosome segregation: insights from trypanosomes
Abstract
Faithful transmission of genetic material is essential for the survival of all organisms. Eukaryotic chromosome segregation is driven by the kinetochore that assembles onto centromeric DNA to capture spindle microtubules and govern the movement of chromosomes. Its molecular mechanism has been actively studied in conventional model eukaryotes, such as yeasts, worms, flies and human. However, these organisms are closely related in the evolutionary time scale and it therefore remains unclear whether all eukaryotes use a similar mechanism. The evolutionary origins of the segregation apparatus also remain enigmatic. To gain insights into these questions, it is critical to perform comparative studies. Here, we review our current understanding of the mitotic mechanism in Trypanosoma brucei, an experimentally tractable kinetoplastid parasite that branched early in eukaryotic history. No canonical kinetochore component has been identified, and the design principle of kinetochores might be fundamentally different in kinetoplastids. Furthermore, these organisms do not appear to possess a functional spindle checkpoint that monitors kinetochore-microtubule attachments. With these unique features and the long evolutionary distance from other eukaryotes, understanding the mechanism of chromosome segregation in T. brucei should reveal fundamental requirements for the eukaryotic segregation machinery, and may also provide hints about the origin and evolution of the segregation apparatus.
Keywords: CENP-A; Trypanosoma brucei; chromosome segregation; kinetochores; kinetoplastids; mitosis.
Figures





Similar articles
-
Faithful chromosome segregation in Trypanosoma brucei requires a cohort of divergent spindle-associated proteins with distinct functions.Nucleic Acids Res. 2018 Sep 19;46(16):8216-8231. doi: 10.1093/nar/gky557. Nucleic Acids Res. 2018. PMID: 29931198 Free PMC article.
-
Kinetoplastid kinetochore proteins KKT14-KKT15 are divergent Bub1/BubR1-Bub3 proteins.Open Biol. 2024 Jun;14(6):240025. doi: 10.1098/rsob.240025. Epub 2024 Jun 12. Open Biol. 2024. PMID: 38862021 Free PMC article.
-
NuSAP4 regulates chromosome segregation in Trypanosoma brucei by promoting bipolar spindle assembly.Commun Biol. 2024 Nov 16;7(1):1524. doi: 10.1038/s42003-024-07248-5. Commun Biol. 2024. PMID: 39550521 Free PMC article.
-
The unconventional kinetoplastid kinetochore: from discovery toward functional understanding.Biochem Soc Trans. 2016 Oct 15;44(5):1201-1217. doi: 10.1042/BST20160112. Biochem Soc Trans. 2016. PMID: 27911702 Free PMC article. Review.
-
Evolutionary Lessons from Species with Unique Kinetochores.Prog Mol Subcell Biol. 2017;56:111-138. doi: 10.1007/978-3-319-58592-5_5. Prog Mol Subcell Biol. 2017. PMID: 28840235 Review.
Cited by
-
Polo-like kinase in trypanosomes: an odd member out of the Polo family.Open Biol. 2020 Oct;10(10):200189. doi: 10.1098/rsob.200189. Epub 2020 Oct 14. Open Biol. 2020. PMID: 33050792 Free PMC article.
-
An unconventional regulatory circuitry involving Aurora B controls anaphase onset and error-free chromosome segregation in trypanosomes.bioRxiv [Preprint]. 2024 Jan 20:2024.01.20.576407. doi: 10.1101/2024.01.20.576407. bioRxiv. 2024. Update in: J Cell Biol. 2024 Nov 4;223(11):e202401169. doi: 10.1083/jcb.202401169. PMID: 38293145 Free PMC article. Updated. Preprint.
-
Trypanosome KKIP1 Dynamically Links the Inner Kinetochore to a Kinetoplastid Outer Kinetochore Complex.Front Cell Infect Microbiol. 2021 Mar 23;11:641174. doi: 10.3389/fcimb.2021.641174. eCollection 2021. Front Cell Infect Microbiol. 2021. PMID: 33834005 Free PMC article.
-
Extensive Translational Regulation through the Proliferative Transition of Trypanosoma cruzi Revealed by Multi-Omics.mSphere. 2021 Oct 27;6(5):e0036621. doi: 10.1128/mSphere.00366-21. Epub 2021 Sep 1. mSphere. 2021. PMID: 34468164 Free PMC article.
-
Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects.Elife. 2014 Sep 23;3:e03676. doi: 10.7554/eLife.03676. Elife. 2014. PMID: 25247700 Free PMC article.
References
-
- Robinson NP, Bell SD. 2005. Origins of DNA replication in the three domains of life. FEBS J. 272, 3757–376610.1111/j.1742-4658.2005.04768.x (doi:10.1111/j.1742-4658.2005.04768.x) - DOI - DOI - PubMed
-
- Mott ML, Berger JM. 2007. DNA replication initiation: mechanisms and regulation in bacteria. Nat. Rev. Microbiol. 5, 343–35410.1038/nrmicro1640 (doi:10.1038/nrmicro1640) - DOI - DOI - PubMed
-
- Gerdes K, Howard M, Szardenings F. 2010. Pushing and pulling in prokaryotic DNA segregation. Cell 141, 927–94210.1016/j.cell.2010.05.033 (doi:10.1016/j.cell.2010.05.033) - DOI - DOI - PubMed
-
- Toro E, Shapiro L. 2010. Bacterial chromosome organization and segregation. Cold Spring Harb. Perspect. Biol. 2, a000349.10.1101/cshperspect.a000349 (doi:10.1101/cshperspect.a000349) - DOI - DOI - PMC - PubMed
-
- Kalliomaa-Sanford AK, Rodriguez-Castañeda FA, McLeod BN, Latorre-Roselló V, Smith JH, Reimann J, Albers SV, Barillà D. 2012. Chromosome segregation in Archaea mediated by a hybrid DNA partition machine. Proc. Natl Acad. Sci. USA 109, 3754–375910.1073/pnas.1113384109 (doi:10.1073/pnas.1113384109) - DOI - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases