Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 Jun 1;268(2):459-63.
doi: 10.1042/bj2680459.

Roles of synthesis and degradation in the regulation of metallothionein accretion in a chicken macrophage-cell line

Affiliations
Comparative Study

Roles of synthesis and degradation in the regulation of metallothionein accretion in a chicken macrophage-cell line

D E Laurin et al. Biochem J. .

Abstract

Metallothionein (MT) is a metal-binding protein rapidly accreted in many tissues in response to trace elements or hormones. To gain an understanding of the regulation of MT accretion, rates of MT synthesis and degradation were determined by using a decay-kinetics technique. A chicken macrophage-cell line (HD11) that rapidly accretes incremental amounts of MT when stimulated with increasing concentrations of Zn2+ or Cd2+ was studied. The maximum rate of MT accretion occurred at 50 microM-Zn2+ or 20 microM-Cd2+. The absolute rate of MT accretion was less in macrophages incubated with 25 microM- as compared with 50 microM-Zn2+, owing to decreased and increased rates of MT synthesis and degradation respectively. The absolute rate of MT accretion was less in macrophages incubated with 10 microM- as compared with 20 microM-Cd2+, owing to a decreased rate of MT synthesis with no change in degradation. Compared with macrophages continually incubated with 50 microM-Zn2+, removal of Zn2+ from medium previously containing 50 microM-Zn2+ decreased the absolute rate of MT accretion, owing to decreased and increased rates of MT synthesis and degradation respectively. Removal of Cd2+ from medium previously containing 20 microM-Cd2+ also decreased the absolute rate of MT accretion in macrophages. Unlike Zn2+ removal, the decrease in MT accretion was due to a decreased rate of MT synthesis with no change in degradation. When macrophages incubated with 50 microM-Zn2+ were subsequently incubated with 20 microM-Cd2+, rates of MT synthesis and accretion were decreased as compared with cells continually incubated with 50 microM-Zn2+ or 20 microM-Cd2+. When macrophages incubated with 20 microM-Cd2+ were subsequently incubated with 50 microM-Zn2+, rates of MT synthesis and accretion were increased as compared with cells continually incubated with 50 microM-Zn2+ or 20 microM-Cd2+. Switching the metal in the incubation medium did not influence the rate of MT degradation. Our results indicate that the rate of MT accretion is determined by variations in the rates of MT synthesis and degradation, depending upon the inducing metal and the concentration of the metal.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Am J Physiol. 1986 Dec;251(6 Pt 1):E688-94 - PubMed
    1. Chem Biol Interact. 1985 Jan;52(3):319-34 - PubMed
    1. Proc Natl Acad Sci U S A. 1988 Jan;85(2):309-13 - PubMed
    1. J Nutr. 1989 Feb;119(2):309-18 - PubMed
    1. Proc Soc Exp Biol Med. 1989 Jun;191(2):130-8 - PubMed

Publication types