DNase I footprinting
- PMID: 23637368
- DOI: 10.1101/pdb.prot074328
DNase I footprinting
Abstract
DNase I footprinting has found a wide following for both identifying and characterizing DNA-protein interactions, particularly because of its simplicity. The concept is that a partial digestion by DNase I of a uniquely (32)P-end-labeled fragment will generate a ladder of fragments, whose mobilities on a denaturing acrylamide gel and whose positions in a subsequent autoradiograph will represent the distance from the end label to the points of cleavage. Bound protein prevents binding of DNase I in and around its binding site and thus generates a "footprint" in the cleavage ladder. The distance from the end label to the edges of the footprint represents the position of the protein-binding site on the DNA fragment. The position of the binding site can be determined by electrophoresing a DNA sequencing ladder alongside the footprint. DNase I cannot bind directly adjacent to a DNA-bound protein because of steric hindrance. Hence, the footprint gives a broad indication of the binding site, generally 8-10 base pairs (bp) larger than the site itself.
Similar articles
-
DNase I footprint analysis of protein-DNA binding.Curr Protoc Mol Biol. 2001 May;Chapter 12:Unit 12.4. doi: 10.1002/0471142727.mb1204s07. Curr Protoc Mol Biol. 2001. PMID: 18265087
-
In Vitro DNase I Footprinting.Methods Mol Biol. 2015;1334:17-27. doi: 10.1007/978-1-4939-2877-4_2. Methods Mol Biol. 2015. PMID: 26404141
-
DNase I footprinting.Methods Mol Biol. 2009;543:37-47. doi: 10.1007/978-1-60327-015-1_3. Methods Mol Biol. 2009. PMID: 19378157
-
Footprinting: a method for determining the sequence selectivity, affinity and kinetics of DNA-binding ligands.Methods. 2007 Jun;42(2):128-40. doi: 10.1016/j.ymeth.2007.01.002. Methods. 2007. PMID: 17472895 Review.
-
DNase I footprinting.Methods Mol Biol. 1997;90:1-22. doi: 10.1385/0-89603-447-X:1. Methods Mol Biol. 1997. PMID: 9407524 Review. No abstract available.
Cited by
-
DNA-protein interaction: identification, prediction and data analysis.Mol Biol Rep. 2019 Jun;46(3):3571-3596. doi: 10.1007/s11033-019-04763-1. Epub 2019 Mar 26. Mol Biol Rep. 2019. PMID: 30915687 Review.
-
Experimental approaches to investigate biophysical interactions between homeodomain transcription factors and DNA.Biochim Biophys Acta Gene Regul Mech. 2025 Mar;1868(1):195074. doi: 10.1016/j.bbagrm.2024.195074. Epub 2024 Dec 5. Biochim Biophys Acta Gene Regul Mech. 2025. PMID: 39644990 Free PMC article. Review.
-
Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription.Transcription. 2014;5(1):e27526. doi: 10.4161/trns.27526. Transcription. 2014. PMID: 25764111 Free PMC article. Review.
-
Choosing a suitable method for the identification of replication origins in microbial genomes.Front Microbiol. 2015 Sep 30;6:1049. doi: 10.3389/fmicb.2015.01049. eCollection 2015. Front Microbiol. 2015. PMID: 26483774 Free PMC article. Review.
-
TET-Catalyzed 5-Carboxylcytosine Promotes CTCF Binding to Suboptimal Sequences Genome-wide.iScience. 2019 Sep 27;19:326-339. doi: 10.1016/j.isci.2019.07.041. Epub 2019 Jul 30. iScience. 2019. PMID: 31404833 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources