Smaug/SAMD4A restores translational activity of CUGBP1 and suppresses CUG-induced myopathy
- PMID: 23637619
- PMCID: PMC3630084
- DOI: 10.1371/journal.pgen.1003445
Smaug/SAMD4A restores translational activity of CUGBP1 and suppresses CUG-induced myopathy
Abstract
We report the identification and characterization of a previously unknown suppressor of myopathy caused by expansion of CUG repeats, the mutation that triggers Myotonic Dystrophy Type 1 (DM1). We screened a collection of genes encoding RNA-binding proteins as candidates to modify DM1 pathogenesis using a well established Drosophila model of the disease. The screen revealed smaug as a powerful modulator of CUG-induced toxicity. Increasing smaug levels prevents muscle wasting and restores muscle function, while reducing its function exacerbates CUG-induced phenotypes. Using human myoblasts, we show physical interactions between human Smaug (SMAUG1/SMAD4A) and CUGBP1. Increased levels of SMAUG1 correct the abnormally high nuclear accumulation of CUGBP1 in myoblasts from DM1 patients. In addition, augmenting SMAUG1 levels leads to a reduction of inactive CUGBP1-eIF2α translational complexes and to a correction of translation of MRG15, a downstream target of CUGBP1. Therefore, Smaug suppresses CUG-mediated muscle wasting at least in part via restoration of translational activity of CUGBP1.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures






Similar articles
-
MBNL1 and CUGBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1.Hum Mol Genet. 2006 Jul 1;15(13):2138-45. doi: 10.1093/hmg/ddl137. Epub 2006 May 24. Hum Mol Genet. 2006. PMID: 16723374
-
Correction of Glycogen Synthase Kinase 3β in Myotonic Dystrophy 1 Reduces the Mutant RNA and Improves Postnatal Survival of DMSXL Mice.Mol Cell Biol. 2019 Oct 11;39(21):e00155-19. doi: 10.1128/MCB.00155-19. Print 2019 Nov 1. Mol Cell Biol. 2019. PMID: 31383751 Free PMC article.
-
RNA Foci, CUGBP1, and ZNF9 are the primary targets of the mutant CUG and CCUG repeats expanded in myotonic dystrophies type 1 and type 2.Am J Pathol. 2011 Nov;179(5):2475-89. doi: 10.1016/j.ajpath.2011.07.013. Epub 2011 Sep 1. Am J Pathol. 2011. PMID: 21889481 Free PMC article.
-
Correction of RNA-Binding Protein CUGBP1 and GSK3β Signaling as Therapeutic Approach for Congenital and Adult Myotonic Dystrophy Type 1.Int J Mol Sci. 2019 Dec 21;21(1):94. doi: 10.3390/ijms21010094. Int J Mol Sci. 2019. PMID: 31877772 Free PMC article. Review.
-
Pathogenic mechanisms of myotonic dystrophy.Biochem Soc Trans. 2009 Dec;37(Pt 6):1281-6. doi: 10.1042/BST0371281. Biochem Soc Trans. 2009. PMID: 19909263 Free PMC article. Review.
Cited by
-
Model organisms in the fight against muscular dystrophy: lessons from drosophila and Zebrafish.Molecules. 2015 Apr 9;20(4):6237-53. doi: 10.3390/molecules20046237. Molecules. 2015. PMID: 25859781 Free PMC article. Review.
-
Bruno-3 regulates sarcomere component expression and contributes to muscle phenotypes of myotonic dystrophy type 1.Dis Model Mech. 2018 May 21;11(5):dmm031849. doi: 10.1242/dmm.031849. Dis Model Mech. 2018. PMID: 29716962 Free PMC article.
-
FSHD muscle shows perturbation in fibroadipogenic progenitor cells, mitochondrial function and alternative splicing independently of inflammation.Hum Mol Genet. 2024 Jan 7;33(2):182-197. doi: 10.1093/hmg/ddad175. Hum Mol Genet. 2024. PMID: 37856562 Free PMC article.
-
Microarray-based detection and expression analysis of new genes associated with drug resistance in ovarian cancer cell lines.Oncotarget. 2017 Jul 25;8(30):49944-49958. doi: 10.18632/oncotarget.18278. Oncotarget. 2017. PMID: 28611294 Free PMC article.
-
In heart failure reactivation of RNA-binding proteins is associated with the expression of 1,523 fetal-specific isoforms.PLoS Comput Biol. 2022 Feb 28;18(2):e1009918. doi: 10.1371/journal.pcbi.1009918. eCollection 2022 Feb. PLoS Comput Biol. 2022. PMID: 35226669 Free PMC article.
References
-
- Harper PS, Brook JD, Newman EE (2001) Myotonic dystrophy. London: W. B. Saunders. ix, 436 p. p.
-
- Osborne RJ, Thornton CA (2006) RNA-dominant diseases. Hum Mol Genet 15 Spec No 2: R162–169. - PubMed
-
- Ranum LP, Cooper TA (2006) RNA-mediated neuromuscular disorders. Annu Rev Neurosci 29: 259–277. - PubMed
-
- Sicot G, Gourdon G, Gomes-Pereira M (2011) Myotonic dystrophy, when simple repeats reveal complex pathogenic entities: new findings and future challenges. Hum Mol Genet 20: R116–123. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- 2R01AR052791-06/AR/NIAMS NIH HHS/United States
- T32 HL007676/HL/NHLBI NIH HHS/United States
- R01 AR044387/AR/NIAMS NIH HHS/United States
- R21 NS078659/NS/NINDS NIH HHS/United States
- P30 HD024064/HD/NICHD NIH HHS/United States
- T32 NS043124/NS/NINDS NIH HHS/United States
- R56 NS042179/NS/NINDS NIH HHS/United States
- 2R01AR044387-12/AR/NIAMS NIH HHS/United States
- R01 NS042179/NS/NINDS NIH HHS/United States
- 2T32HL007676-21A1/HL/NHLBI NIH HHS/United States
- IDDRC HD024064/HD/NICHD NIH HHS/United States
- R01 AR052791/AR/NIAMS NIH HHS/United States
- NS042179/NS/NINDS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases