Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr 26;8(4):e62097.
doi: 10.1371/journal.pone.0062097. Print 2013.

Targeting photoreceptors via intravitreal delivery using novel, capsid-mutated AAV vectors

Affiliations

Targeting photoreceptors via intravitreal delivery using novel, capsid-mutated AAV vectors

Christine N Kay et al. PLoS One. .

Erratum in

  • PLoS One. 2013;8(9). doi:10.1371/annotation/99ee1789-a658-4fb0-8593-40a40e9f344a

Abstract

Development of viral vectors capable of transducing photoreceptors by less invasive methods than subretinal injection would provide a major advancement in retinal gene therapy. We sought to develop novel AAV vectors optimized for photoreceptor transduction following intravitreal delivery and to develop methodology for quantifying this transduction in vivo. Surface exposed tyrosine (Y) and threonine (T) residues on the capsids of AAV2, AAV5 and AAV8 were changed to phenylalanine (F) and valine (V), respectively. Transduction efficiencies of self-complimentary, capsid-mutant and unmodified AAV vectors containing the smCBA promoter and mCherry cDNA were initially scored in vitro using a cone photoreceptor cell line. Capsid mutants exhibiting the highest transduction efficiencies relative to unmodified vectors were then injected intravitreally into transgenic mice constitutively expressing a Rhodopsin-GFP fusion protein in rod photoreceptors (Rho-GFP mice). Photoreceptor transduction was quantified by fluorescent activated cell sorting (FACS) by counting cells positive for both GFP and mCherry. To explore the utility of the capsid mutants, standard, (non-self-complementary) AAV vectors containing the human rhodopsin kinase promoter (hGRK1) were made. Vectors were intravitreally injected in wildtype mice to assess whether efficient expression exclusive to photoreceptors was achievable. To restrict off-target expression in cells of the inner and middle retina, subsequent vectors incorporated multiple target sequences for miR181, an miRNA endogenously expressed in the inner and middle retina. Results showed that AAV2 containing four Y to F mutations combined with a single T to V mutation (quadY-F+T-V) transduced photoreceptors most efficiently. Robust photoreceptor expression was mediated by AAV2(quadY-F+T-V) -hGRK1-GFP. Observed off-target expression was reduced by incorporating target sequence for a miRNA highly expressed in inner/middle retina, miR181c. Thus we have identified a novel AAV vector capable of transducing photoreceptors following intravitreal delivery to mouse. Furthermore, we describe a robust methodology for quantifying photoreceptor transduction from intravitreally delivered AAV vectors.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have read the journal's policy and have the following conflicts: W.W.H. and the University of Florida have a financial interest in the use of AAV therapies, and own equity in a company (AGTC Inc.) that might, in the future, commercialize some aspects of this work. There are no further patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1
Figure 1. Transduction efficiency of unmodified and capsid mutated vectors in vitro .
661W cells were infected with scAAV2, scAAV2(quadY-F), scAAV2(quadY-F +T-V), scAAV5, scAAV5(singleY-F), scAAV5(doubleY-F), and scAAV8, scAAV8(doubleY-F), and scAAV8(doubleY-F+T-V) at a multiplicity of infection (MOI) of 10,000. mCherry expression is shown in arbitrary units on the ‘y’ axis, calculated by multiplying the percentage of positive cells by the mean fluorescence intensity in each sample.
Figure 2
Figure 2. Qualitative comparison of unmodified and capsid mutated AAV vectors in vivo .
Fundoscopy (red channel only) of Rho-GFP mice 4 weeks post-injection with unmodified and capsid-mutated scAAV-smCBA-mCherry vectors (1.5×109 vg delivered). Exposure and gain settings were the same across all images.
Figure 3
Figure 3. Quantitative comparison of unmodified and capsid mutated AAV vectors in vivo .
Transduction efficiency of unmodified and capsid-mutated scAAV2, scAAV5 and scAAV8 vectors in Rho-GFP mice. FACS analysis was used to quantify the percentage of cells that were GFP positive (PRs), mCherry positive (any retinal cells transduced with AAV) and both GFP and mCherry positive (PRs transduced by AAV). Representative plots for a negative control (uninjected retina) and 2 pooled retinas injected with scAAV2(quadY-F+T-V) are shown in Panels A and B, respectively. Cells that were both GFP and mCherry positive are shown in the top right of Panels A and B and represent the percent of transduced PRs. The bottom right of Panels A and B show cells that were mCherry positive but GFP negative, representing off-target transduction. The percentage of mCherry positive PRs (a measure of in vivo PR transduction efficiency for each vector) in retinas injected with unmodified or capsid-mutated scAAV vectors is shown in Panel C.
Figure 4
Figure 4. In vivo analysis of AAV2-based vectors containing the hGRK1 promoter.
Fundus images paired with immunohistochemistry of frozen retinal cross-sections from C57BL/6 mice taken 4 weeks post injection with AAV2, AAV2(quad Y-F), and AAV2(quad Y-F +T-V) vectors containing hGRK1-GFP (7.5×109 vg delivered). Identical gain and exposures were used for fundoscopy. All tissue sections were imaged at 20X, with identical gain and exposure settings. GFP expression is shown in green. Nuclei were counterstained with DAPI (blue). RPE- retinal pigment epithelium, IS/OS- inner segments/outer segments, ONL- outer nuclear layer, INL- inner nuclear layer, GCL- ganglion cell layer.
Figure 5
Figure 5. In vivo analysis of AAV5-based vectors containing the hGRK1 promoter.
Fundus images paired with IHC of frozen retinal cross-sections from C57BL/6 mice taken 4 weeks post injection with capsid mutated AAV5 vectors containing hGRK1-GFP. For analysis of AAV5(singleY-F) and AAV5(doubleY-F) vectors 8.5×1010 vg and 5.3×109 vg were delivered, respectively. Retinal tissue sections containing optic nerve head (Panels B and E) and peripheral retinal cross sections (Panels C and F) are shown. White arrows demarcate the optic nerve head. Identical gain and exposures were used for fundoscopy. All cross sections were imaged at 20X, with identical gain and exposure settings. GFP expression is shown in green. Nuclei were counterstained with DAPI (blue). RPE- retinal pigment epithelium, IS/OS- inner segments/outer segments, ONL- outer nuclear layer, INL- inner nuclear layer, GCL- ganglion cell layer.
Figure 6
Figure 6. In vivo analysis of AAV8-based vectors containing the hGRK1 promoter.
Fundus images paired with immunohistochemistry of frozen retinal cross-sections from C57BL/6 mice taken 4 weeks post injection with capsid mutated AAV8 vectors containing hGRK1-GFP. For analysis of AAV8(doubleY-F) and AAV8(doubleY-F+T-V) vectors, 1.3×1011 and 6.0×1010 vg were delivered, respectively. Retinal cross sections containing optic nerve head (Panels B and E) and peripheral retinal cross sections (Panels C and F) are shown. White arrows demarcate the optic nerve head. Identical gain and exposures were used for fundoscopy. All cross sections were imaged at 20X, with identical gain and exposure settings. GFP expression is shown in green. Nuclei were counterstained with DAPI (blue). RPE- retinal pigment epithelium, IS/OS- inner segments/outer segments, ONL- outer nuclear layer, INL- inner nuclear layer, GCL- ganglion cell layer.
Figure 7
Figure 7. MicroRNA-mediated regulation of transgene expression.
Both hGRK1-GFP and hGRK1-GFP-miR181c were packaged in AAV2(quadY-F+T-V) and delivered intravitreally to C57BL/6 mice (1.5×1010 vg). Fundoscopy at 4 weeks post injection is shown adjacent to immunohistochemistry of frozen retinal cross-sections. Identical gain and exposures were used for fundoscopy. All cross sections were imaged at 20X, with identical gain and exposure settings. GFP expression is shown in green. Nuclei were counterstained with DAPI (blue). RPE- retinal pigment epithelium, IS/OS- inner segments/outer segments, ONL- outer nuclear layer, INL- inner nuclear layer, GCL- ganglion cell layer.

References

    1. Cideciyan AV, Hauswirth WW, Aleman TS, Kaushal S, Schwartz SB, et al. (2009) Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum Gene Ther 20: 999–1004. - PMC - PubMed
    1. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, et al. (2008) Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 358: 2240–2248. - PMC - PubMed
    1. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, et al. (2008) Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 358: 2231–2239. - PubMed
    1. Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS (2010) Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet 11: 273–284. - PubMed
    1. Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB, et al. (2012) Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 130: 9–24. - PMC - PubMed

Publication types

MeSH terms