Accurate timekeeping is controlled by a cycling activator in Arabidopsis
- PMID: 23638299
- PMCID: PMC3639509
- DOI: 10.7554/eLife.00473
Accurate timekeeping is controlled by a cycling activator in Arabidopsis
Abstract
Transcriptional feedback loops are key to circadian clock function in many organisms. Current models of the Arabidopsis circadian network consist of several coupled feedback loops composed almost exclusively of transcriptional repressors. Indeed, a central regulatory mechanism is the repression of evening-phased clock genes via the binding of morning-phased Myb-like repressors to evening element (EE) promoter motifs. We now demonstrate that a related Myb-like protein, REVEILLE8 (RVE8), is a direct transcriptional activator of EE-containing clock and output genes. Loss of RVE8 and its close homologs causes a delay and reduction in levels of evening-phased clock gene transcripts and significant lengthening of clock pace. Our data suggest a substantially revised model of the circadian oscillator, with a clock-regulated activator essential both for clock progression and control of clock outputs. Further, our work suggests that the plant clock consists of a highly interconnected, complex regulatory network rather than of coupled morning and evening feedback loops. DOI:http://dx.doi.org/10.7554/eLife.00473.001.
Keywords: Arabidopsis; circadian rhythm; evening element; phase; transcription factors.
Conflict of interest statement
The authors declare that no competing interests exist.
Figures
Comment in
-
Time for a change.Elife. 2013 Apr 30;2:e00791. doi: 10.7554/eLife.00791. Elife. 2013. PMID: 23638303 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
