Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jun 14:1294:145-51.
doi: 10.1016/j.chroma.2013.04.022. Epub 2013 Apr 18.

A versatile polydopamine platform for facile preparation of protein stationary phase for chip-based open tubular capillary electrochromatography enantioseparation

Affiliations

A versatile polydopamine platform for facile preparation of protein stationary phase for chip-based open tubular capillary electrochromatography enantioseparation

Chun-Ming Liu et al. J Chromatogr A. .

Abstract

A novel, simple, and economical method for the preparation of chiral stationary phases for chip-based enantioselective open tubular capillary electrochromatography (OT-CEC) using polydopamine (PDA) coating as an adhesive layer was reported for the first time. After the poly(dimethylsiloxane) (PDMS) microfluidic chip was filled with dopamine (DA) solution, PDA film was gradually formed and deposited on the inner wall of microchannel as permanent coating via the oxidation of DA by the oxygen dissolved in the solution. Due to possessing plentiful catechol and amine functional groups, PDA coating can serve as a versatile multifunctional platform for further secondary reactions, leading to tailoring of the coatings for protein bioconjugation by the thiols and amines via Michael addition or Schiff base reactions. Bovine serum albumin (BSA), acting as a target protein, was then stably and homogeneously immobilized in the PDA-coated PDMS microchannel to fabricate a novel protein stationary phase. Compared with the native PDMS microchannels, the modified surfaces exhibited much better wettability, more stable and enhanced electroosmotic mobility, and less nonspecific adsorption. The water contact angle and electroosmotic flow of PDA/BSA-coated PDMS substrate were measured to be 44° and 2.83×10(-4)cm(2)V(-1)s(-1), compared to those of 112° and 2.10×10(-4)cm(2)V(-1)s(-1) from the untreated one, respectively. Under a mild condition, d- and l-tryptophan were efficiently separated with a resolution of 1.68 within 130s utilizing a separation length of 37mm coupled with in-column amperometric detection on the PDA/BSA-coated PDMS microchips. This present versatile platform, facile conjugation of biomolecules onto microchip surfaces via mussel adhesive protein inspired coatings, may offer new processing strategies to prepare a biomimetic surface design on microfluidic chips, which is promising in high-throughput and complex biological analysis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources