Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Jun;13(3):316-23.
doi: 10.1016/j.coph.2013.04.004. Epub 2013 May 3.

A new perspective on muscarinic receptor antagonism in obstructive airways diseases

Affiliations
Review

A new perspective on muscarinic receptor antagonism in obstructive airways diseases

Herman Meurs et al. Curr Opin Pharmacol. 2013 Jun.

Abstract

Acetylcholine has traditionally only been regarded as a neurotransmitter of the parasympathetic nervous system, causing bronchoconstriction and mucus secretion in asthma and COPD by muscarinic receptor activation on airway smooth muscle and mucus-producing cells. Recent studies in experimental models indicate that muscarinic receptor stimulation in the airways also induces pro-inflammatory, pro-proliferative and pro-fibrotic effects, which may involve activation of airway structural and inflammatory cells by neuronal as well as non-neuronal acetylcholine. In addition, mechanical changes caused by muscarinic agonist-induced bronchoconstriction may be involved in airway remodeling. Crosstalk between muscarinic receptors and β2-adrenoceptors on airway smooth muscle causes a reduced bronchodilator response to β2-agonists, and a similar mechanism could possibly apply to the poor inhibition of inflammatory and remodeling processes by these drugs. Collectively, these findings provide novel perspectives for muscarinic receptor antagonists in asthma and COPD, since these drugs may not only acutely affect cholinergic airways obstruction, but also have important beneficial effects on β2-agonist responsiveness, airway inflammation and remodeling. The clinical relevance of these findings is presently under investigation and starting to emerge.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances