Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Jul-Aug:106-107:17-32.
doi: 10.1016/j.pneurobio.2013.04.004. Epub 2013 Apr 30.

Mitochondrial dysfunction and oxidative stress in Parkinson's disease

Affiliations
Review

Mitochondrial dysfunction and oxidative stress in Parkinson's disease

Sudhakar Raja Subramaniam et al. Prog Neurobiol. 2013 Jul-Aug.

Abstract

Parkinson's disease (PD) is a movement disorder that is characterized by the progressive degeneration of dopaminergic neurons in substantia nigra pars compacta resulting in dopamine deficiency in the striatum. Although majority of the PD cases are sporadic several genetic mutations have also been linked to the disease thus providing new opportunities to study the pathology of the illness. Studies in humans and various animal models of PD reveal that mitochondrial dysfunction might be a defect that occurs early in PD pathogenesis and appears to be a widespread feature in both sporadic and monogenic forms of PD. The general mitochondrial abnormalities linked with the disease include mitochondrial electron transport chain impairment, alterations in mitochondrial morphology and dynamics, mitochondrial DNA mutations and anomaly in calcium homeostasis. Mitochondria are vital organelles with multiple functions and their dysfunction can lead to a decline in energy production, generation of reactive oxygen species and induction of stress-induced apoptosis. In this review, we give an outline of mitochondrial functions that are affected in the pathogenesis of sporadic and familial PD, and hence provide insights that might be valuable for focused future research to exploit possible mitochondrial targets for neuroprotective interventions in PD.

Keywords: Mitochondrial dysfunction; Parkinson's disease.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Abbas N, Lucking CB, Ricard S, Durr A, Bonifati V, De Michele G, Bouley S, Vaughan JR, Gasser T, Marconi R, Broussolle E, Brefel-Courbon C, Harhangi BS, Oostra BA, Fabrizio E, Bohme GA, Pradier L, Wood NW, Filla A, Meco G, Denefle P, Agid Y, Brice A. A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe. French Parkinson's Disease Genetics Study Group and the European Consortium on Genetic Susceptibility in Parkinson's Disease. Human molecular genetics. 1999;8:567–574. - PubMed
    1. Amo T, Sato S, Saiki S, Wolf AM, Toyomizu M, Gautier CA, Shen J, Ohta S, Hattori N. Mitochondrial membrane potential decrease caused by loss of PINK1 is not due to proton leak, but to respiratory chain defects. Neurobiology of disease. 2011;41:111–118. - PubMed
    1. Anonymous. A randomized clinical trial of coenzyme Q10 and GPI-1485 in early Parkinson disease. Neurology. 2007;68:20–28. - PubMed
    1. Anvret A, Westerlund M, Sydow O, Willows T, Lind C, Galter D, Belin AC. Variations of the CAG trinucleotide repeat in DNA polymerase gamma (POLG1) is associated with Parkinson's disease in Sweden. Neuroscience letters. 2010;485:117–120. - PubMed
    1. Ashley AK, Hanneman WH, Katoh T, Moreno JA, Pollack A, Tjalkens RB, Legare ME. Analysis of targeted mutation in DJ-1 on cellular function in primary astrocytes. Toxicology letters. 2009;184:186–191. - PMC - PubMed

Publication types