Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jul 15;453(2):179-86.
doi: 10.1042/BJ20130285.

Structural characterization of amorphous calcium carbonate-binding protein: an insight into the mechanism of amorphous calcium carbonate formation

Affiliations

Structural characterization of amorphous calcium carbonate-binding protein: an insight into the mechanism of amorphous calcium carbonate formation

Jingtan Su et al. Biochem J. .

Erratum in

  • Biochem J. 2013 Aug 15;454(1):167

Abstract

ACC (amorphous calcium carbonate) plays an important role in biomineralization process for its function as a precursor for calcium carbonate biominerals. However, it is unclear how biomacromolecules regulate the formation of ACC precursor in vivo. In the present study, we used biochemical experiments coupled with bioinformatics approaches to explore the mechanisms of ACC formation controlled by ACCBP (ACC-binding protein). Size-exclusion chromatography, chemical cross-linking experiments and negative staining electron microscopy reveal that ACCBP is a decamer composed of two adjacent pentamers. Sequence analyses and fluorescence quenching results indicate that ACCBP contains two Ca²⁺-binding sites. The results of in vitro crystallization experiments suggest that one Ca²⁺-binding site is critical for ACC formation and the other site affects the ACC induction efficiency. Homology modelling demonstrates that the Ca²⁺-binding sites of pentameric ACCBP are arranged in a 5-fold symmetry, which is the structural basis for ACC formation. To the best of our knowledge, this is the first report on the structural basis for protein-induced ACC formation and it will significantly improve our understanding of the amorphous precursor pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources