Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 1;8(5):e62877.
doi: 10.1371/journal.pone.0062877. Print 2013.

Task-free functional MRI in cervical dystonia reveals multi-network changes that partially normalize with botulinum toxin

Affiliations

Task-free functional MRI in cervical dystonia reveals multi-network changes that partially normalize with botulinum toxin

Cathérine C S Delnooz et al. PLoS One. .

Abstract

Cervical dystonia is characterized by involuntary, abnormal movements and postures of the head and neck. Current views on its pathophysiology, such as faulty sensorimotor integration and impaired motor planning, are largely based on studies of focal hand dystonia. Using resting state fMRI, we explored whether cervical dystonia patients have altered functional brain connectivity compared to healthy controls, by investigating 10 resting state networks. Scans were repeated immediately before and some weeks after botulinum toxin injections to see whether connectivity abnormalities were restored. We here show that cervical dystonia patients have reduced connectivity in selected regions of the prefrontal cortex, premotor cortex and superior parietal lobule within a distributed network that comprises the premotor cortex, supplementary motor area, primary sensorimotor cortex, and secondary somatosensory cortex (sensorimotor network). With regard to a network originating from the occipital cortex (primary visual network), selected regions in the prefrontal and premotor cortex, superior parietal lobule, and middle temporal gyrus areas have reduced connectivity. In selected regions of the prefrontal, premotor, primary motor and early visual cortex increased connectivity was found within a network that comprises the prefrontal cortex including the anterior cingulate cortex and parietal cortex (executive control network). Botulinum toxin treatment resulted in a partial restoration of connectivity abnormalities in the sensorimotor and primary visual network. These findings demonstrate the involvement of multiple neural networks in cervical dystonia. The reduced connectivity within the sensorimotor and primary visual networks may provide the neural substrate to expect defective motor planning and disturbed spatial cognition. Increased connectivity within the executive control network suggests excessive attentional control and while this may be a primary trait, perhaps contributing to abnormal motor control, this may alternatively serve a compensatory function in order to reduce the consequences of the motor planning defect inflicted by the other network abnormalities.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Between-group effects for the SMN, ECN and PVN.
Depicted here are the between-group effects for three RSNs. Between-group effects are corrected for family-wise errors (p≤0.013 for A. and B.; p≤0.05 (blue) and p≤0.013 (orange) for C.). A. shows frontal regions and precentral regions abnormally connected to the SMN, indicating decreased connectivity within the CD group. B. shows brain regions linked to the ECN, exhibiting increased connectivity for the CD group. C. The PVN shows CD-related decreased connectivity of several regions including PFC, PMC, SM1, and visual and temporal areas. *The right column (green) shows the original RSNs used in the dual regression approach, thresholded at Z = 2,0. These are PICA spatial maps of healthy subjects derived from Smith et al. Images are t-statistics overlaid on the MNI-152 standard brain. The left hemisphere of the brain corresponds to the right side in this image.
Figure 2
Figure 2. Treatment-related effects for the SMN and PVN.
Depicted here are the treatment-related effects for two RSNs, corrected for family-wise errors (p≤0.05). A. shows the ventral premotor cortex abnormally connected to the SMN, but with an increase of connectivity after BoNT treatment (in orange t = 1>t = 0, in blue t = 1> t = 2). In the sagittal plane, the effect for t = 1> t = 2 (blue) is projected on the left hemisphere for graphical purposes. B. shows areas in the visual cortex and primary motor cortex linked to the PVN, also exhibiting increased connectivity after BoNT treatment. *The right column (green) shows the original RSNs used in the dual regression approach, thresholded at Z = 2,0. These are PICA spatial maps of healthy subjects derived from Smith et al. Images are t-statistics overlaid on the MNI-152 standard brain. The left hemisphere of the brain corresponds to the right side in this image.

Similar articles

Cited by

References

    1. Defazio G, Abbruzzese G, Livrea P, Berardelli A (2004) Epidemiology of primary dystonia. Lancet Neurol 3: 673–678. - PubMed
    1. Cakmur R, Donmez B, Uzunel F, Aydin H, Kesken S (2004) Evidence of widespread impairment of motor cortical inhibition in focal dystonia: a transcranial magnetic stimulation study in patients with blepharospasm and cervical dystonia. Adv Neurol 94: 37–44. - PubMed
    1. Hanajima R, Ugawa Y, Terao Y, Sakai K, Furubayashi T, et al. (1998) Cortico-cortical inhibition of the motor cortical area projecting to sternocleidomastoid muscle in normals and patients with spasmodic torticollis or essential tremor. Electroencephalogr Clin Neurophysiol 109: 391–396. - PubMed
    1. Siggelkow S, Kossev A, Moll C, Dauper J, Dengler R, et al. (2002) Impaired sensorimotor integration in cervical dystonia: a study using transcranial magnetic stimulation and muscle vibration. J Clin Neurophysiol 19: 232–239. - PubMed
    1. Naumann M, Magyar-Lehmann S, Reiners K, Erbguth F, Leenders KL (2000) Sensory tricks in cervical dystonia: perceptual dysbalance of parietal cortex modulates frontal motor programming. Ann Neurol 47: 322–328. - PubMed

Publication types

MeSH terms