Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013;80(4):211-7.
doi: 10.1159/000348328. Epub 2013 May 6.

Perspectives on resorbable osteosynthesis materials in craniomaxillofacial surgery

Affiliations
Review

Perspectives on resorbable osteosynthesis materials in craniomaxillofacial surgery

Paul Schumann et al. Pathobiology. 2013.

Abstract

Since introduction to the clinics in the 1990s, resorbable osteosynthesis systems have undergone extensive improvements in order to establish their use as a standard treatment, especially in craniomaxillofacial surgery. However, the development of osteosynthesis systems made of poly(α-hydroxy acid) polymers has been hindered by the lack of information on the mechanical properties and biocompatibility of these materials. Moreover, magnesium-based degredable osteosynthesis materials have not yet been integrated into clinical practice owing to biocompatibility problems. Osteosynthesis systems made from nonresorbable titanium alloys have shown excellent biocompatibility, stability and individual fitting to the implant bed, so these materials are currently considered the 'gold standard'. The procedure of plate removal has been subjected to intense scrutiny and controversy. Bioresorbable materials are indicated for special conditions, such as osteosynthesis of the growing skull or orbital floor reconstructions. This paper presents an overview of the currently available and investigated resorbable osteosynthesis materials in comparison with the nonresorbable 'gold standard' titanium. The main problem areas such as sterilization, biocompatibility and stability are highlighted and perspectives for further improvements are provided.

PubMed Disclaimer

LinkOut - more resources