Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 6:7:171.
doi: 10.3389/fnhum.2013.00171. eCollection 2013.

Context-dependent generalization

Affiliations

Context-dependent generalization

Jordan A Taylor et al. Front Hum Neurosci. .

Abstract

The pattern of generalization following motor learning can provide a probe on the neural mechanisms underlying learning. For example, the breadth of generalization to untrained regions of space after visuomotor adaptation to targets in a restricted region of space has been attributed to the directional tuning properties of neurons in the motor system. Building on this idea, the effect of different types of perturbations on generalization (e.g., rotation vs. visual translation) have been attributed to the selection of differentially tuned populations. Overlooked in this discussion is consideration of how the context of the training environment may constrain generalization. Here, we explore the role of context by having participants learn a visuomotor rotation or a translational shift in two different contexts, one in which the array of targets were presented in a circular arrangement and the other in which they were presented in a rectilinear arrangement. The perturbation and environments were either consistent (e.g., rotation with circular arrangement) or inconsistent (e.g., rotation with rectilinear arrangement). The pattern of generalization across the workspace was much more dependent on the context of the environment than on the perturbation, with broad generalization for the rectilinear arrangement for both types of perturbations. Moreover, the generalization pattern for this context was evident, even when the perturbation was introduced in a gradual manner, precluding the use of an explicit strategy. We describe how current models of generalization might be modified to incorporate these results, building on the idea that context provides a strong bias for how the motor system infers the nature of the visuomotor perturbation and, in turn, how this information influences the pattern of generalization.

Keywords: generalization (psychology); models; motor adaptation; motor control; motor learning; theoretical.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Possible patterns of generalization. A 30° rotation on the cursor (red circle) is imposed during movements to the training target at 0° (green). Generalization is tested at a probe target at 180° (blue). Generalization consistent with learning a rotation would appear as a clockwise shift in hand angle for movements to the probe target. Generalization consistent with learning a translation would appear as a counterclockwise shift in hand angle.
Figure 2
Figure 2
Experimental design for Experiments 1 and 2. (A,B) Experiment 1: Participants in the CircleRotation group (A) viewed a blue ring. A target could appear at one of eight locations. During the training block, reaches were limited to the training target location and the visual perturbation was a 30° CCW rotation. The LineTranslation group (B) viewed two vertically oriented red lines, with four target locations on each vertical line. The visual perturbation here was a 4 cm vertically-oriented visual shift. (C,D) Experiment 2: for the CircleTranslation group, targets were presented on a blue ring (C) and the visual perturbation for the training target was a vertical shift of 4 cm. For the LineRotation group, targets were presented on two vertical lines and the perturbation was a 30° CCW rotation. Note that the endpoint feedback for both groups generally fell off of the contextual boundary. (E) In Baseline blocks and the No Feedback blocks, all target locations were equally probable. During the Training block, only the training target location (0°, green target) was present. In the Test block, the training target location and the probe target locations (blue for circular arrangement and red for rectilinear arrangement) were equally probable. After the Baseline blocks, visual feedback was only provided on trials to the training target location.
Figure 3
Figure 3
Group averaged endpoint hand angle across trials in Experiment 1. The visuomotor mapping was veridical for the first 96 trials (Base1, Base2, Base3). Dashed vertical lines mark when the visual perturbation was present during the Training block (movements 97–136) and during the Test block (movements 137–226). Filled circles represent movements to the training target location and open circles represent movements to other target locations (blue: CircleRotation group; red: LineTranslation group). Endpoint position for the LineTranslation group was converted from Cartesian to polar coordinates since the visual perturbation was identical in polar space for the two groups.
Figure 4
Figure 4
Group averaged trajectories during the Test block in Experiment 1 for the (A) CircleRotation group (blue) and (B) LineTranslation group (red) compared with the averaged trajectories during the last baseline block (black). (C) Mean endpoint hand angles for the training location and three probe target locations (135°, 180°, and −135°). Black circles represent the values for each participant.
Figure 5
Figure 5
Group averaged trajectories during the No Feedback block in Experiment 1 for the (A) CircleRotation group (blue) and (B) LineTranslation group (red) compared with the averaged trajectories during the last baseline block (black). Movements to each target location were made without visual feedback.
Figure 6
Figure 6
Group averaged endpoint hand angle across trials in Experiment 2. Block structure was the same as in Figure 2. Filled circles represent movements to the training target location and open circles represent movements to other target locations (cyan: CircleTranslation group; purple: LineRotation group).
Figure 7
Figure 7
Group averaged trajectories during the Test block in Experiment 2 for the (A) CircleTranslation group (cyan) and (B) LineRotation group (purple) compared with the averaged trajectories during the last baseline block (black). (C) Mean endpoint hand angles for the training location and three probe target locations (135°, 180°, and −135°). Black circles represent the values for each participant.
Figure 8
Figure 8
Group averaged trajectories during the No Feedback block in Experiment 2 for the (A) CircleTranslation group (cyan) and (B) LineRotation group (purple) compared with the averaged trajectories during the last baseline block (black). Movements to each target location were made without visual feedback.
Figure 9
Figure 9
Group averaged endpoint hand angle across trials in Experiment 3. A vertical shift (black solid line) was introduced in an incremental manner during the Training Block, reaching a final value of 4 cm (movements 97–256). Feedback was only provided for reaches to the training target location during the Test block (movements 256–226). Visual feedback was never provided in the final, No Feedback block. Filled circles represent movements to the training target location and open circles represent movements to other target locations.
Figure 10
Figure 10
(A) Group averaged trajectories during the Test block (red) in Experiment 3. (B) Mean endpoint hand angles for the training location and the three probe target locations (135°, 180°, and −135°). Black circles represent the values for each participant. (C) Average trajectories during the No Feedback block. Black lines in (A) and (C) correspond to average trajectories during the last baseline block.

Similar articles

Cited by

References

    1. Atkeson C. G. (1989). Learning arm kinematics and dynamics. Annu. Rev. Neurosci. 12, 157–183 10.1146/annurev.ne.12.030189.001105 - DOI - PubMed
    1. Bedford F. L. (1993). Perceptual and cognitive spatial learning. J. Exp. Psychol. Hum. Percept. Perform. 19, 517–530 10.1037/0096-1523.19.3.517 - DOI - PubMed
    1. Brayanov J. B., Press D. Z., Smith M. A. (2012). Motor memory is encoded as a gain-field combination of intrinsic and extrinsic action representations. J. Neurosci. 32, 14951–14965 10.1523/JNEUROSCI.1928-12.2012 - DOI - PMC - PubMed
    1. Conditt M. A., Gandolfo F., Mussa-Ivaldi F. A. (1997). The motor system does not learn the dynamics of the arm by rote memorization of past experience. J. Neurophysiol. 78, 554–560 - PubMed
    1. Criscimagna-Hemminger S. E., Shadmehr R. (2008). Consolidation patterns of human motor memory. J. Neurosci. 28, 9610–9618 10.1523/JNEUROSCI.3071-08.2008 - DOI - PMC - PubMed

LinkOut - more resources