Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 2;8(5):e63076.
doi: 10.1371/journal.pone.0063076. Print 2013.

Fatty acid metabolites in rapidly proliferating breast cancer

Affiliations

Fatty acid metabolites in rapidly proliferating breast cancer

Joseph T O'Flaherty et al. PLoS One. .

Abstract

Purpose: Breast cancers that over-express a lipoxygenase or cyclooxygenase are associated with poor survival possibly because they overproduce metabolites that alter the cancer's malignant behaviors. However, these metabolites and behaviors have not been identified. We here identify which metabolites among those that stimulate breast cancer cell proliferation in vitro are associated with rapidly proliferating breast cancer.

Experimental design: We used selective ion monitoring-mass spectrometry to quantify in the cancer and normal breast tissue of 27 patients metabolites that stimulate (15-, 12-, 5-hydroxy-, and 5-oxo-eicosatetraenoate, 13-hydroxy-octadecaenoate [HODE]) or inhibit (prostaglandin [PG]E2 and D2) breast cancer cell proliferation. We then related their levels to each cancer's proliferation rate as defined by its Mib1 score.

Results: 13-HODE was the only metabolite strongly, significantly, and positively associated with Mib1 scores. It was similarly associated with aggressive grade and a key component of grade, mitosis, and also trended to be associated with lymph node metastasis. PGE2 and PGD2 trended to be negatively associated with these markers. No other metabolite in cancer and no metabolite in normal tissue had this profile of associations.

Conclusions: Our data fit a model wherein the overproduction of 13-HODE by 15-lipoxygenase-1 shortens breast cancer survival by stimulating its cells to proliferate and possibly metastasize; no other oxygenase-metabolite pathway, including cyclooxygenase-PGE2/D2 pathways, uses this specific mechanism to shorten survival.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Cell growth.
MCF-7 (upper panels) and MDA-MB-231 (lower panels) cell cultures were challenged with a metabolite for 48 hr and assayed for cell density. One-way ANOVA gave the statistical significances shown between comparisons of cells treated with 0 (culture media) or 100 pM–1 µM of the indicated metabolite. Data are means ±SEM in ODU490 of 3–6 cultures.
Figure 2
Figure 2. Metabolites and Mib1.
Levels of the metabolites are compared by tissue type (panel A), Mib1 score in malignant (panel B) or normal (panel C) tissue; and grade in malignant tissue (panel D). Probability values were defined by paired (panel A) or unpaired (panels B, C, and D) Student t-tests and were corrected for the 7 comparisons made in each panel by the false discovery rate method.
Figure 3
Figure 3. Metabolites and other markers.
Malignant tissue levels of the indicated metabolites were compared for poorer or better prognoses by mitosis, nuclear pleomorphism, and tubule formation indices (panel A) or nodal metastasis (panel B). 13-HODE (panel C) and PGE2 (panel D) levels were compared by poorer vs. better prognoses for: race, African (closed bars) or Caucasian American (open bars); Her2 score, 2 & 3 (closed bars) or 0 & 1 (open bars); age >50 years (closed bars) or ≤50 years (open bars); body mass index (BMI) >30 (closed bars) or ≤30 (open bars); estrogen receptors (ER) negative (closed bars) or positive (open bars); triple negative (tri (−)) for estrogen, progesterone, & Her2 receptors (closed bars) or not (open bars); tumor size, >2 (closed bars) or ≤ 2 cm (open bars). p Values are from Students t-test corrected for the 3 comparisons in each component of growth (panel A), for the 7 metabolite comparisons (panel B), or for the 7 marker comparisons (panels C and D) by the false discovery rate method. Analysis of these two metabolites for progesterone receptors or for 15-HETE, 12-HETE, 5-HETE, 5-oxo-ETE, and PGD2 in all 8 marker categories found no significant differences (data not shown).
Figure 4
Figure 4. FA and Mib1.
Levels of the indicated FA are presented as mass (upper panels) or percentage of total recovered FA (lower panels) in malignant (left panels) and normal (right panels) breast tissue of patients with high or low Mib1 scores. Comparison of the 7 FA parameters on the basis of high or low Mib1 score by Students t-test gave no significant differences even before correction for multiple comparisons; the same analysis in RBC and plasma likewise revealed no significant differences as a function of Mib1 scores (results not shown).

References

    1. Caly M, Genin P, Ghuzlan AA, Elie C, Freneaux P, et al. (2004) Analysis of correlation between mitotic index, MIB1 score and S-phase fraction as proliferation markers in invasive breast carcinoma. Methodological aspects and prognostic value in a series of 257 cases. Anticancer Res 24: 3283–3288. - PubMed
    1. Offersen BV, Alsner J, Ege Olsen K, Riisbro R, Brunner N, et al. (2008) A comparison among HER2, TP53, PAI-1, angiogenesis, and proliferation activity as prognostic variables in tumours from 408 patients diagnosed with early breast cancer. Acta Oncol 47: 618–632. - PubMed
    1. Nie D (2007) Cyclooxygenases and lipoxygenases in prostate and breast cancers. Front Biosci 12: 1574–1585. - PubMed
    1. Schneider C, Pozzi A (2011) Cyclooxygenases and lipoxygenases in cancer. Cancer Metastasis Rev 30: 277–294. - PMC - PubMed
    1. Jiang WG, Douglas-Jones A, Mansel RE (2003) Levels of expression of lipoxygenases and cyclooxygenase-2 in human breast cancer. Prostaglandins Leukot Essent Fatty Acids 69: 275–281. - PubMed

Publication types