Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.)

Ray Ming et al. Genome Biol. .

Abstract

Background: Sacred lotus is a basal eudicot with agricultural, medicinal, cultural and religious importance. It was domesticated in Asia about 7,000 years ago, and cultivated for its rhizomes and seeds as a food crop. It is particularly noted for its 1,300-year seed longevity and exceptional water repellency, known as the lotus effect. The latter property is due to the nanoscopic closely packed protuberances of its self-cleaning leaf surface, which have been adapted for the manufacture of a self-cleaning industrial paint, Lotusan.

Results: The genome of the China Antique variety of the sacred lotus was sequenced with Illumina and 454 technologies, at respective depths of 101× and 5.2×. The final assembly has a contig N50 of 38.8 kbp and a scaffold N50 of 3.4 Mbp, and covers 86.5% of the estimated 929 Mbp total genome size. The genome notably lacks the paleo-triplication observed in other eudicots, but reveals a lineage-specific duplication. The genome has evidence of slow evolution, with a 30% slower nucleotide mutation rate than observed in grape. Comparisons of the available sequenced genomes suggest a minimum gene set for vascular plants of 4,223 genes. Strikingly, the sacred lotus has 16 COG2132 multi-copper oxidase family proteins with root-specific expression; these are involved in root meristem phosphate starvation, reflecting adaptation to limited nutrient availability in an aquatic environment.

Conclusions: The slow nucleotide substitution rate makes the sacred lotus a better resource than the current standard, grape, for reconstructing the pan-eudicot genome, and should therefore accelerate comparative analysis between eudicots and monocots.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Orthogroup dynamics in lotus and other angiosperm genomes. Ancestral gene content and gene family (orthogroup) dynamics in lotus and other eudicot and monocot genomes identify expansion of the number of gene families and gene content associated with the ancestral eudicot.
Figure 2
Figure 2
High resolution analysis of syntenic regions of Nelumbo nucifera (Nn1/Nm2) and Vitis vinifera (Vv1/Vv2/Vv3). Synteny regions were identified from Figure S5 in Additional file 1. Gene models are arrays in middle of each panel; Colored boxes and lines connect regions of sequence similarity (LastZ) for protein-coding sequences between pair-wise comparisons.
Figure 3
Figure 3
Polyploidy events in the history of angiosperm evolution. (A) Summary of polyploidy events in the history of angiosperm evolution, with a focus on the possible phylogenetic origins of the three subgenomes comprising the gamma paleohexaploidy event in core eudicots. Synteny analysis of the Nelumbo genome indicates that gamma is shared only within the core eudicots; however, phylogenomic analysis suggests a more complex history since around half of the gamma pairs were duplicated core-eudicot-wide and the other half eudicot-wide (See Table S10 in Additional file 1). AA, BB, and CC are three subgenomes of the ancestral hexaploidy. Three possible phylogenetic origins of the ancestral AA genome involved in gamma are denoted by 1, 2 and 3. Lamda is defined as the most recent polyploidy event in the evolutionary history of Nelumbo. All the other Greek symbols are well-known polyploidy events in the evolutionary history of angiosperms. Gamma: genome-triplication (hexaploid) event in core eudicot genomes [7,23]; Sigma and rho: genome duplications detected in grass genomes [8]; Epsilon: angiosperm-wide duplication detected in large-scale gene family phylogenies. Based on gene tree phylogenomics, we hypothesize that the triplication event involved a tetraploid event (BBCC red star) first, then subgenome AA combined with BBCC to form hexaploidy AABBCC (blue dashed line). (B) Predicted gene tree topologies of hypothetical origins of the AA subgenome of the gamma paleohexaploidy. A, B, C indicate surviving genes inherited from AA, BB, CC subgenomes of the AABBCC ancestral hexaploidy. N indicates genes of Nelumbo.
Figure 4
Figure 4
Lotus-specific expansion in LPR1/LPR2 proteins. (A) The number of LPR1/LPR2 homologs in land plants. Homologs detected by Basic Local Alignment Search Tool against the genomes of land plants are represented by a box. A protein similarity network of those proteins is also shown; lotus proteins are represented as purple nodes, Arabidopsis proteins (LPR1 and LPR2) are represented as green nodes and other land plant proteins are represented as grey nodes. (B) Heatmap of COG2132 gene family member expression in lotus. Reads per kilo base per million (RPKM) values were log2 transformed, where blue correlates to high expression, and yellow to low expression. (C) A maximum-likelihood tree of LPR1/LPR2-like lotus proteins. Branch support was calculated using an Approximate Likelihood-Ratio Test. Lotus homologs are connected with a dashed bracket, whereas proteins whose genes are found in tandem on the genome are connected with a solid bracket. A detailed phylogeny of COG2132 members can be found in Figure S8 in Additional file 1.

Similar articles

Cited by

References

    1. Shen-Miller J. Sacred lotus, the long-living fruits of China Antique. Seed Sci Res. 2002;14:131–143.
    1. Shen-Miller J, Schopf JW, Harbottle G, Cao RJ, Ouyang S, Zhou KS, Southon JR, Liu GH. Long-living lotus: germination and soil g-irradiation of centuries-old fruits, and cultivation, growth, and phenotypic abnormalities of offspring. Am J Bot. 2002;14:236–247. - PubMed
    1. Duke JA, Bogenschutz-Godwin MJ, duCellier J, Duke AK. Handbook of Medicinal Herbs. 2002. Boca Raton: CRC Press.
    1. Diao Y, Chen L, Yang G, Zhou M, Song Y, Hu Z, Lin JY. Nuclear DNA C-values in 12 species in Nymphaeales. Caryologia. 2006;14:25–30.
    1. Yang M, Han Y, VanBuren R, Ming R, Xu L, Han Y, Liu Y. Genetic linkage maps for Asian and American lotus constructed using novel SSR markers derived from the genome of sequenced cultivar. BMC Genomics. 2012;14:653. - PMC - PubMed

Publication types