Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 7;8(5):e63536.
doi: 10.1371/journal.pone.0063536. Print 2013.

Next-generation sequencing identifies transportin 3 as the causative gene for LGMD1F

Affiliations

Next-generation sequencing identifies transportin 3 as the causative gene for LGMD1F

Annalaura Torella et al. PLoS One. .

Abstract

Limb-girdle muscular dystrophies (LGMD) are genetically and clinically heterogeneous conditions. We investigated a large family with autosomal dominant transmission pattern, previously classified as LGMD1F and mapped to chromosome 7q32. Affected members are characterized by muscle weakness affecting earlier the pelvic girdle and the ileopsoas muscles. We sequenced the whole exome of four family members and identified a shared heterozygous frame-shift variant in the Transportin 3 (TNPO3) gene, encoding a member of the importin-β super-family. The TNPO3 gene is mapped within the LGMD1F critical interval and its 923-amino acid human gene product is also expressed in skeletal muscle. In addition, we identified an isolated case of LGMD with a new missense mutation in the same gene. We localized the mutant TNPO3 around the nucleus, but not inside. The involvement of gene related to the nuclear transport suggests a novel disease mechanism leading to muscular dystrophy.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. LGMD1F family pedigree.
Squares represent male; circles represent female; white figures symbolize normal individuals; black figures indicate individuals with clinical muscular dystrophy. The original LGMD1F family has been extended from subject II,2 and now includes 64 LGMD patients of both sexes and five non-penetrant carriers (IV-4, V-26, V-29, V-33, and VI-68). The whole-exome sequencing was performed in four patients indicated by arrows (V-28, VI-36, VI-53, VII-5).
Figure 2
Figure 2. Sequence analyses of the TNPO3 mutations.
a) Heterozygous delA mutation in Exon 22 of the TNPO3 gene in Proband VII-5. Aligned electropherograms show mutated (top) and wild-type (bottom) sequences; b) Heterozygous. c.G2453A) in exon 21 of the TNPO3 gene; c) Pedigree of the isolated case.
Figure 3
Figure 3. Western blot analysis of skeletal muscle tissue with antibodies to TNPO3.
Equal amounts of muscle proteins from a LGMD1F patient and a control were run in each lane (10 µg) on a 9% SDS-polyacrylamide gel and then blotted onto nitrocellulose membrane. In this experiment, we used a monoclonal antibody that recognizes a recombinant fragment (Human) near the N terminus of TNPO3 at a 1∶100 dilution. A double band is visible in the patient only.
Figure 4
Figure 4. Indirect immunofluorescence analysis of the wt-hTNPO3 compared with delA p.X924C -hTNPO3.
Following transient transfections, HeLa cells were incubated for 48 h with normal DMEM and detected by anti-HA immunofluorescence. Nuclei are stained with DAPI (blue). The endogenous protein is recognized using a rabbit monoclonal anti-TNPO3 antibody (green), while the transfected TNPO3 proteins were HA-tagged (red). a) An accumulation around the nucleus is usually observed using the mutant delA p.X924C -hTNPO3. b) The typical intranuclear staining pattern can be observed in cells transfected with wt-hTNPO3 (in red) or c) in non transfected HeLa cells.

References

    1. Nigro V (2003) Molecular bases of autosomal recessive limb-girdle muscular dystrophies. Acta Myol 22: 35–42. - PubMed
    1. Nigro V, Aurino S, Piluso G (2011) Limb girdle muscular dystrophies: update on genetic diagnosis and therapeutic approaches. Curr Opin Neurol 24: 429–436. - PubMed
    1. Fanin M, Nascimbeni AC, Aurino S, Tasca E, Pegoraro E, et al. (2009) Frequency of LGMD gene mutations in Italian patients with distinct clinical phenotypes. Neurology 72: 1432–1435. - PubMed
    1. Mercuri E, Bushby K, Ricci E, Birchall D, Pane M, et al. (2005) Muscle MRI findings in patients with limb girdle muscular dystrophy with calpain 3 deficiency (LGMD2A) and early contractures. Neuromuscul Disord 15: 164–171. - PubMed
    1. Wattjes MP, Kley RA, Fischer D (2010) Neuromuscular imaging in inherited muscle diseases. Eur Radiol 20: 2447–2460. - PMC - PubMed

Publication types

Supplementary concepts

LinkOut - more resources