Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Controlled Clinical Trial
. 2013 Apr 28;19(16):2529-36.
doi: 10.3748/wjg.v19.i16.2529.

Effects of Nigella sativa on outcome of hepatitis C in Egypt

Affiliations
Controlled Clinical Trial

Effects of Nigella sativa on outcome of hepatitis C in Egypt

Eman Mahmoud Fathy Barakat et al. World J Gastroenterol. .

Abstract

Aim: To evaluate the safety, efficacy and tolerability of Nigella sativa (N. sativa) in patients with hepatitis C not eligible for interferon (IFN)-α.

Methods: Thirty patients with hepatitis C virus (HCV) infection, who were not eligible for IFN/ribavirin therapy, were included in the present study. Inclusion criteria included: patients with HCV with or without cirrhosis, who had a contraindication to IFN-α therapy, or had refused or had a financial constraint to IFN-α therapy. Exclusion criteria included: patients on IFN-α therapy, infection with hepatitis B or hepatitis I virus, hepatocellular carcinoma, other malignancies, major severe illness, or treatment non-compliance. Various parameters, including clinical parameters, complete blood count, liver function, renal function, plasma glucose, total antioxidant capacity (TAC), and polymerase chain reaction, were all assessed at baseline and at the end of the study. Clinical assessment included: hepato and/or splenomegaly, jaundice, palmar erythema, flapping tremors, spider naevi, lower-limb edema, and ascites. N. sativa was administered for three successive months at a dose of (450 mg three times daily). Clinical response and incidence of adverse drug reactions were assessed initially, periodically, and at the end of the study.

Results: N. sativa administration significantly improved HCV viral load (380808.7 ± 610937 vs 147028.2 ± 475225.6, P = 0.001) and TAC (1.35 ± 0.5 vs 1.612 ± 0.56, P = 0.001). After N. sativa administration, the following laboratory parameters improved: total protein (7.1 ± 0.7 vs 7.5 ± 0.8, P = 0.001), albumin (3.5 ± 0.87 vs 3.69 ± 0.91, P = 0.008), red blood cell count (4.13 ± 0.9 vs 4.3 ± 0.9, P = 0.001), and platelet count (167.7 ± 91.2 vs 198.5 ± 103, P = 0.004). Fasting blood glucose (104.03 ± 43.42 vs 92.1 ± 31.34, P = 0.001) and postprandial blood glucose (143.67 ± 72.56 vs 112.1 ± 42.9, P = 0.001) were significantly decreased in both diabetic and non-diabetic HCV patients. Patients with lower-limb edema decreased significantly from baseline compared with after treatment [16 (53.30%) vs 7 (23.30%), P = 0.004]. Adverse drug reactions were unremarkable except for a few cases of epigastric pain and hypoglycemia that did not affect patient compliance.

Conclusion: N. sativa administration in patients with HCV was tolerable, safe, decreased viral load, and improved oxidative stress, clinical condition and glycemic control in diabetic patients.

Keywords: Hepatitis C virus; Nigella sativa; Oxidative stress; Viral load.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Box plot for hepatitis C virus RNA (polymerase chain reaction) levels (A), total antioxidant capacity (B) before and after treatment. A: Median test (equivalent to Wilcoxon matched pairs test), P < 0.001. Hepatitis C virus (HCV) RNA [(polymerase chain reaction (PCR)]_0: PCR values of patients before treatment; HCV RNA (PCR)_3: PCR values of patients after 3 mo treatment; B: Paired t test, P < 0.001. Total antioxidant capacity (TAC)_0: TAC levels of patients before treatment; TAC_3: TAC levels of patients after 3 mo treatment.
Figure 2
Figure 2
Line plot for polymerase chain reaction levels in individual patients at baseline and after 3 mo of treatment. Series 1: Polymerase chain reaction (PCR) values in all patients at baseline; Series 2: PCR values in all patients after 3 mo of treatment.

References

    1. Nguyen MH, Keeffe EB. Prevalence and treatment of hepatitis C virus genotypes 4, 5, and 6. Clin Gastroenterol Hepatol. 2005;3:S97–S101. - PubMed
    1. Abdel-Aziz F, Habib M, Mohamed MK, Abdel-Hamid M, Gamil F, Madkour S, Mikhail NN, Thomas D, Fix AD, Strickland GT, et al. Hepatitis C virus (HCV) infection in a community in the Nile Delta: population description and HCV prevalence. Hepatology. 2000;32:111–115. - PubMed
    1. Elkady A, Tanaka Y, Kurbanov F, Sugauchi F, Sugiyama M, Khan A, Sayed D, Moustafa G, Abdel-Hameed AR, Mizokami M. Genetic variability of hepatitis C virus in South Egypt and its possible clinical implication. J Med Virol. 2009;81:1015–1023. - PubMed
    1. Khattab MA, Ferenci P, Hadziyannis SJ, Colombo M, Manns MP, Almasio PL, Esteban R, Abdo AA, Harrison SA, Ibrahim N, et al. Management of hepatitis C virus genotype 4: recommendations of an international expert panel. J Hepatol. 2011;54:1250–1262. - PubMed
    1. Chen SL, Morgan TR. The natural history of hepatitis C virus (HCV) infection. Int J Med Sci. 2006;3:47–52. - PMC - PubMed

Publication types

MeSH terms