Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 10;8(5):e61015.
doi: 10.1371/journal.pone.0061015. Print 2013.

Upregulation of miR-150* and miR-630 induces apoptosis in pancreatic cancer cells by targeting IGF-1R

Affiliations

Upregulation of miR-150* and miR-630 induces apoptosis in pancreatic cancer cells by targeting IGF-1R

Lulu Farhana et al. PLoS One. .

Abstract

MicroRNAs have been implicated in many critical cellular processes including apoptosis. We have previously found that apoptosis in pancreatic cancer cells was induced by adamantyl retinoid-related (ARR) molecule 3-Cl-AHPC. Here we report that 3-Cl-AHPC-dependent apoptosis involves regulating a number of microRNAs including miR-150* and miR-630. 3-Cl-AHPC stimulated miR-150* expression and caused decreased expression of c-Myb and IGF-1R in the pancreatic cancer cells. 3-Cl-AHPC-mediated reduction of c-Myb resulted in diminished binding of c-Myb with IGF-1R and Bcl-2 promoters, thereby causing repression of their transcription and protein expression. Over-expression of miR-150* also resulted in diminished levels of c-Myb and Bcl-2 proteins. Furthermore, the addition of the miRNA inhibitor 2'-O-methylated miR-150 blocked 3-Cl-AHPC-mediated increase in miR-150* levels and abrogated loss of c-Myb protein. Knockdown of c-Myb in PANC-1 cells resulted in enhanced apoptosis both in the presence or absence of 3-Cl-AHPC confirming the anti-apoptotic property of c-Myb. Overexpression of miR-630 also induced apoptosis in the pancreatic cancer cells and inhibited target protein IGF-1R mRNA and protein expression. Together these results implicate key roles for miR-150* and miR-630 and their targeting of IGF-1R to promote apoptosis in pancreatic cancer cells.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. 3-Cl-AHPC mediated modulation of microRNAs in pancreatic cancer cells.
MicroRNAs were validated by quantitative Real time PCR. Cells were treated with 3-Cl-AHPC for 24 h. Detail methodologies were as described in Materials and Methods. The error bars represent the mean of three separate determinations ± the standard deviation (SD). *, ** and *** (<0.05, <0.01 and <0.001) were significantly different in comparison between control and treated samples using t-Test.
Figure 2
Figure 2. 3-Cl-AHPC mediated expression of microRNA targets in pancreatic cancer cells.
(A and B) Reduced expression of mRNA by SYBR-green RT-PCR; (C and E) decreased proteins levels were demonstrated by Western blots analysis. D). 3-Cl-AHPC exposure increased miR-150* expression and subsequently decreased expression of c-Myb and IGF-1R proteins (E). The error bars represent the mean of three separate determinations ± the standard deviation (SD). *, ** and *** (<0.05, <0.01 and <0.001) were significantly different in comparison between control and treated samples using t-Test.
Figure 3
Figure 3. Overexpression of pre-miR-150* reduced target proteins and induced apoptosis in pancreatic cancer cells.
(A) Increased expression of pre-miR-150* expression vector and pre-miR-150* reduced expression of c-Myb and IGF-1R mRNA and protein in pre-miR-150* stably transfected cells (B–D). Cells were treated with 1 µM 3-Cl-AHPC for 24 h. (E) pre-miR-150* induced apoptosis by itself and enhanced 3-Cl-AHPC mediated apoptosis in PANC-1 cells. Cells were transiently transfected with pre-miR-150* expression vector for 24 h and then exposed to 3-Cl-AHPC for 24 h. Induction of apoptosis was assessed using Annexin V-FITC labeling with propidium iodide (PI) staining in cells and the error bars represent the mean of three separate determinations ± the standard deviation (SD). All treated samples are significantly different from miR-vector. * (<0.05), ** (<0.01 ) and *** (<0.001 ) significantly different in comparison to miR-vector by t-Test. Over-expression of miR-150* induced activation of caspase 3 as indicated by cleaved caspase 3 fragments in pre-miR-150* transiently transfected cells (upper right panel). pre-miR-150* expressed PANC-1 cells induced apoptosis as indicated in acridine orange/ethidium bromide stained cells in lower right panel. Cells were transfected with pre- miR-150* for 48 h and then stained and photographed using Olympus fluorescence microscope digital camera software and DP2-BSW software.
Figure 4
Figure 4. Inhibitor of miR-150* blocked 3-Cl-AHPC-mediated decreased of c-Myb in PANC-1 cells.
(A) Inhibitor 2′-O-methylated miR-150* (OME-150) inhibited 3-Cl-AHPC mediated miR-150* expression in transiently transfected cells. (B and C) miR-150 inhibitor blocked the 3-Cl-AHPC mediated c-Myb degradation. Cells were treated with 1 µM 3-Cl-AHPC for 24 h. (D) Knock down of c-Myb expression in cells. (E) Knock down of c-Myb enhanced the apoptosis in cells. Cells stably transfected with three sh-Myb knockdown expression vectors and scrumble sequence control vector were exposed to 3-Cl-AHPC for 24 h. Induction of apoptosis was assessed using Annexin V-FITC labeling with propidium iodide (PI) staining in cells and the error bars represent the mean of three separate determinations ± the standard deviation (SD). All treated samples and sh-Myb are significantly different from control and sh-vector; • and ••, ** (<0.05 and <0.01 respectively) are significantly different by t-Test and • represented the comparison between 3-Cl-AHPC to OME-150*+3-Cl-AHPC treated samples.
Figure 5
Figure 5. 3-Cl-AHPC mediated decreased c-Myb binding to Bcl-2 and IGF-IR promoters resulted in reduced protein expression.
(A and B) 3-Cl-AHPC decreased Bcl-2 mRNA and protein expression. (C) Over-expression of pre-miR-150* reduced Bcl-2 protein expression. (D) 3-Cl-AHPC decreased c-Myb- binding to IGF-1R and Bcl-2 promoter sites in chromatin immunoprecipitation assay. Cells were exposed to 3-Cl-AHPC for 24 h. The error bars represent the mean of three separate determinations ± the standard deviation (SD). ** and *** (<0.01 and <0.001) were significantly different in comparison between control to 3-Cl-AHPC treated mRNA and Myb binding in promoter sites using t-Test.
Figure 6
Figure 6. Expression of pre-miR-150* and knockdown of c-Myb inhibited CD44+/CD24+ stem-cell like spheres formation in cells.
(A and C) Pre-miR-150* inhibited sphere formation in CD44+/CD24+ cells. (B and C) c-Myb knockdown inhibited sphere formation in CD44+/CD24+ PANC-1 cells. For sphere formation, the CD44+/CD24+ cells were sorted by flow cytometry from stably transfected pre-miR150* and sh-Myb knock down cells, respectively. The sizes of spheres were photographed and measured on a 100 µm scale and magnification 400× using Olympus fluorescence microscope digital camera software and DP2-BSW software. The error bars represent the mean of 15 sphere determinations ± the standard deviation. ** was significantly different in comparison to control spheres. Data were analyzed by ANOVA; Tukey HSD test for multiple comparisons. **P<0.0001 vs control. (D) Scheme showing predicted target conserved site of miR-630 in the 3′UTR of IGF-1R.
Figure 7
Figure 7. Over-expression of pre-miR-630 reduced IGF-1R expression and inhibited cell growth and induced apoptosis in cells.
(A) pre-miR-630 expression in PANC-1 and MiaPaCa-2 cells. (B and C) Increased expression of pre-miR-630 decreased IGF-1R mRNA but not Cdc14A in cells. (D). Decreased IGF-1R protein expression in pre-miR-630 expressed cells. (E) Inhibitor 2′-O-methylated miR-630 (OME-630) blocked the IGF-1R mRNA degradation. Cells were transiently transfected with pre-miR-630 for 48 h (F and G) pre-miR-630 expression inhibited growth and induced apoptosis in PANC-1 cells. Inhibition of cell proliferations was evaluated after 48 h of pre-miR-630 transiently transfected cells by MTT assay and expressed as percent of that inhibited at a time relative to the miR-vector control. The error bars represent the mean of four separate determinations ± the standard deviation (SD). *, ** and *** (<0.05, <0.01 and <0.001) were significantly different in comparison between miR-vector and miR-630; • was highly significant and represented the comparison between miR-630 to miR-630+OME-630 using t-Test. Apoptosis of miR-630 cells was evaluated after 48 h of transfected cells. The cell death was measured by cytoplasmic histone-associated-DNA-fragments by ELISA (enrichment factor = OD of miR-630 expressed lysate/OD of miR-vector, OD at 405 nm-490 nm).

Similar articles

Cited by

References

    1. Lee YS, Dutta A (2009) MicroRNAs in cancer. Annu Rev Pathol 4: 199–227. - PMC - PubMed
    1. Nanna-Sinkam SP, Croce CM (2011) Non-coding RNAs in cancer initiation and progression and as novel biomarkers. Mol Oncol 5: 483–491. - PMC - PubMed
    1. Bhayani MK, Calin GA, Lai SY (2012) Functional relevance of miRNA sequences in human disease. Mutat Res 731: 14–19. - PMC - PubMed
    1. Mott JL (2009) Micro RNAs involved in tumor suppressor and oncogene pathways: Implication for hepatobiliary neoplasia. Hepatology 50: 630–637. - PMC - PubMed
    1. Bartel DP (2009) MicroRNAs. Target recognition and regulatory functions. Cell 136: 215–233. - PMC - PubMed

Publication types

MeSH terms