Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 May;51(5):527-32.
doi: 10.1111/j.1751-1097.1990.tb01961.x.

Photochemistry of DNA using 193 nm excimer laser radiation

Affiliations

Photochemistry of DNA using 193 nm excimer laser radiation

I E Kochevar et al. Photochem Photobiol. 1990 May.

Abstract

Photoproducts in double-stranded DNA induced by 193 nm radiation have been investigated. Double-stranded, supercoiled pBR322 DNA in buffered aqueous solution was exposed to varying fluences of 193 nm radiation from an ArF excimer laser. The quantum yields for formation of cyclobutylpyrimidine dimers, frank strand breaks and alkali labile sites were calculated from the conversion of supercoiled (Form I) DNA to relaxed (Form II) DNA after treatment with Micrococcus luteus dimer-specific endonuclease, no treatment, or treatment with alkali and heat, respectively. The quantum yields were 1.65 (+/- 0.03) X 10(-3) for pyrimidine dimers, 9.4 (+/- 3.2) X 10(-5) for frank strand breaks and 9.6 (+/- 3.6) X 10(-5) for alkali labile sites. The quantum yields for pyrimidine dimers and strand breaks and alkali labile sites were not affected by 10 nM mannitol. The relative quantum yields for these DNA photoproducts induced by 193 nm radiation differed markedly from those produced by 254 nm radiation.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources