Sequestration of a highly reactive intermediate in an evolving pathway for degradation of pentachlorophenol
- PMID: 23676275
- PMCID: PMC3683723
- DOI: 10.1073/pnas.1214052110
Sequestration of a highly reactive intermediate in an evolving pathway for degradation of pentachlorophenol
Abstract
Microbes in contaminated environments often evolve new metabolic pathways for detoxification or degradation of pollutants. In some cases, intermediates in newly evolved pathways are more toxic than the initial compound. The initial step in the degradation of pentachlorophenol by Sphingobium chlorophenolicum generates a particularly reactive intermediate; tetrachlorobenzoquinone (TCBQ) is a potent alkylating agent that reacts with cellular thiols at a diffusion-controlled rate. TCBQ reductase (PcpD), an FMN- and NADH-dependent reductase, catalyzes the reduction of TCBQ to tetrachlorohydroquinone. In the presence of PcpD, TCBQ formed by pentachlorophenol hydroxylase (PcpB) is sequestered until it is reduced to the less toxic tetrachlorohydroquinone, protecting the bacterium from the toxic effects of TCBQ and maintaining flux through the pathway. The toxicity of TCBQ may have exerted selective pressure to maintain slow turnover of PcpB (0.02 s(-1)) so that a transient interaction between PcpB and PcpD can occur before TCBQ is released from the active site of PcpB.
Keywords: biodegradation; channeling; molecular evolution; quinone reductase.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





References
-
- Siraki AG, Chan TS, O’Brien PJ. Application of quantitative structure-toxicity relationships for the comparison of the cytotoxicity of 14 p-benzoquinone congeners in primary cultured rat hepatocytes versus PC12 cells. Toxicol Sci. 2004;81(1):148–159. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases