Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jul;43(1):185-93.
doi: 10.3892/ijo.2013.1944. Epub 2013 May 16.

Pharmacological inhibition of macrophage migration inhibitory factor interferes with the proliferation and invasiveness of squamous carcinoma cells

Affiliations

Pharmacological inhibition of macrophage migration inhibitory factor interferes with the proliferation and invasiveness of squamous carcinoma cells

Nadège Kindt et al. Int J Oncol. 2013 Jul.

Abstract

Recent clinical observations and experimental studies of our group indicate that macrophage migration inhibitory factor (MIF) may contribute to tumor progression in head and neck squamous cell carcinomas (HNSCC). The present study was undertaken to examine the effects of the irreversible MIF inhibitor 4-iodo-6-phenylpyrimidine (4-IPP) on proliferation and invasiveness of the squamous carcinoma cell line SCCVII. Cell counting, crystal violet assay and flow cytometry were used to analyze the effects of 4-IPP on SCCVII cell growth. The impact of 4-IPP on cell invasiveness was assessed by Boyden chamber assay. Knockdown of the MIF receptor CD74 was achieved by transduction with lentiviral vectors encoding anti-CD74 shRNAs. As shown by immunofluorescence staining, SCCVII cells express both MIF and CD74. Decreased MIF immunoreactivity as a result of exposure to 4-IPP suggested a covalent modification of the cytokine. 4-IPP inhibited SCCVII cell proliferation and invasiveness. Moreover, the cytostatic effect of 4-IPP was enhanced by CD74 knockdown. The inhibitory effects of 4-IPP on cell proliferation and invasiveness strongly suggest that MIF is involved in proliferative activity and invasive properties of squamous carcinoma cells. In conclusion, MIF inhibition may open possibilities for target-directed treatment of head and neck squamous cell carcinoma.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances