The C. elegans gene pan-1 encodes novel transmembrane and cytoplasmic leucine-rich repeat proteins and promotes molting and the larva to adult transition
- PMID: 23682709
- PMCID: PMC3679943
- DOI: 10.1186/1471-213X-13-21
The C. elegans gene pan-1 encodes novel transmembrane and cytoplasmic leucine-rich repeat proteins and promotes molting and the larva to adult transition
Abstract
Background: Extracellular leucine-rich repeat (eLRR) proteins are a highly diverse superfamily of membrane-associated or secreted proteins. In the membrane-associated eLRR proteins, the leucine-rich repeat motifs interact with the extracellular matrix and other ligands. Characterizing their functions in animal model systems is key to deciphering their activities in various developmental processes.
Results: In this study, we identify pan-1 as a critical regulator of C. elegans larval development. pan-1 encodes both transmembrane and cytoplasmic isoforms that vary in the presence and number of leucine-rich repeats. RNAi experiments reveal that pan-1 is required for developmental processes that occur during the mid to late larval stages. Specifically, pan-1 loss of function causes a late larval arrest with a failure to complete development of the gonad, vulva, and hypodermis. pan-1 is also required for early larval ecdysis and execution of the molting cycle at the adult molt. We also provide evidence that pan-1 functionally interacts with the heterochronic gene lin-29 during the molting process.
Conclusions: We show that PAN-1 is a critical regulator of larval development. Our data suggests that PAN-1 promotes developmental progression of multiple tissues during the transition from a larva to a reproductive adult. We further demonstrate that the activity of PAN-1 is complex with diverse roles in the regulation of animal development.
Figures







References
-
- Dolan J, Walshe K, Alsbury S, Hokamp K, O’Keeffe S, Okafuji T, Miller SF, Tear G, Mitchell KJ. The extracellular leucine-rich repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns. BMC Genomics. 2007;8:320. doi: 10.1186/1471-2164-8-320. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources