Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar 1;2(3):e23510.
doi: 10.4161/onci.23510.

Trial watch: Chemotherapy with immunogenic cell death inducers

Affiliations

Trial watch: Chemotherapy with immunogenic cell death inducers

Erika Vacchelli et al. Oncoimmunology. .

Abstract

It is now clear that the immune system plays a critical role not only during oncogenesis and tumor progression, but also as established neoplastic lesions respond to therapy. Selected cytotoxic chemicals can indeed elicit immunogenic cell death, a functionally peculiar type of apoptosis that stimulates tumor-specific cognate immune responses. Such immunogenic chemotherapeutics include cyclophosphamide, doxorubicin and oxaliplatin (which are approved by FDA for the treatment of various hematological and solid malignancies), mitoxantrone (which is currently employed both as an anticancer agent and against multiple sclerosis) and patupilone (a microtubular poison in clinical development). One year ago, in the second issue of OncoImmunology, we discussed the scientific rationale behind immunogenic chemotherapy and reviewed the status of recent clinical trials investigating the off-label use of cyclophosphamide, doxorubicin, oxaliplatin and mitoxantrone in cancer patients. Here, we summarize the latest developments in this area of clinical research, covering both high-impact studies that have been published during the last 13 months and clinical trials that have been initiated in the same period to assess the antineoplastic profile of immunogenic chemotherapeutics.

Keywords: ATP; HMGB1; autophagy; calreticulin; dendritic cells; epothilone B.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012;19:107–20. doi: 10.1038/cdd.2011.96. - DOI - PMC - PubMed
    1. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ. 2007;14:1237–43. doi: 10.1038/sj.cdd.4402148. - DOI - PubMed
    1. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2012 doi: 10.1146/annurev-immunol-032712-100008. In press. - DOI - PubMed
    1. Zitvogel L, Kepp O, Kroemer G. Decoding cell death signals in inflammation and immunity. Cell. 2010;140:798–804. doi: 10.1016/j.cell.2010.02.015. - DOI - PubMed
    1. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13:54–61. doi: 10.1038/nm1523. - DOI - PubMed

Publication types