Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jul 15;86(2):253-66.
doi: 10.1016/j.bcp.2013.05.011. Epub 2013 May 17.

Inhibiting cancer metastasis via targeting NAPDH oxidase 4

Affiliations

Inhibiting cancer metastasis via targeting NAPDH oxidase 4

Biao Zhang et al. Biochem Pharmacol. .

Abstract

Cancer metastasis is a major cause for cancer-related death and inhibiting cancer metastasis is an alternative way to treat cancer. Several lines of reported evidence suggest that NADPH oxidase 4 (NOX4) is a potential target for intervention of cancer metastasis, as the reactive oxygen species (ROS) generated by this enzyme plays important roles in TGF-β signaling, an important inducer of cancer metastasis. Here we show (1) that TGF-β induces ROS production in breast cancer 4T1 cells and enhances cell migration and that the effect of TGF-β depends on NOX4 expression, (2) that knockdown of NOX4 via RNAi significantly decreases the migration ability of 4T1 cells in the presence or absence of TGF-β and significantly attenuates distant metastasis of 4T1 cells to lung and bone, (3) that Schisandrin B (Sch B), a naturally occurring dibenzocyclooctadiene lignan with very low toxicity, is a novel NOX inhibitor and its IC50 toward NOX4 is 9.3μM, and (4) that Sch B suppresses TGF-β-induced and NOX4-associated ROS production in 4T1 cells and inhibits TGF-β-enhanced cell migration. Similar to NOX4 knockdown observed in this study, Sch B significantly attenuated 4T1 cells distant metastasis to lung and bone in our recently published study. In line with previous reports, the study suggests that pharmacologically targeting NOX4 may be a potential approach to disrupt cancer metastasis.

PubMed Disclaimer

Publication types

LinkOut - more resources