Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Jun 1;73(11):3200-5.
doi: 10.1158/0008-5472.CAN-13-0265. Epub 2013 May 21.

Vesicle trafficking and RNA transfer add complexity and connectivity to cell-cell communication

Affiliations
Review

Vesicle trafficking and RNA transfer add complexity and connectivity to cell-cell communication

Charles T Roberts Jr et al. Cancer Res. .

Abstract

Cell-cell communication, either in direct proximity or at a distance, generally occurs by receptor-ligand engagement and subsequent activation of downstream intracellular signaling cascades. This conventional, largely protein-based, model has long been considered necessary and sufficient to explain coordinate tissue and organismal function. Intriguing recent work indicates that many cells can also transfer RNA directly via cell-cell trafficking of nanometer-sized, lipid-bilayer vesicles. The distinct biogenesis pathways that give rise to the different vesicle types described to date are just beginning to be elucidated. Notwithstanding their diverse origin, all types of vesicles seem to contain a broad, cell-specific, nonrandom representation of cellular protein and RNA species. The cell-cell trafficking of coding and small noncoding RNAs in particular constitutes a new paradigm for the direct phenotypic modulation of cells in the local microenvironment and in distal organs. Here, we review the current understanding of RNA vesicle trafficking and its emerging role in cell-cell signaling.

PubMed Disclaimer

Publication types

LinkOut - more resources