Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials
- PMID: 23696515
- PMCID: PMC4819962
- DOI: 10.1002/hep.26455
Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials
Abstract
The magnetic resonance imaging-estimated proton density fat fraction (MRI-PDFF) is a novel imaging-based biomarker that allows fat mapping of the entire liver, whereas the magnetic resonance spectroscopy-measured proton density fat fraction (MRS-PDFF) provides a biochemical measure of liver fat in small regions of interest. Cross-sectional studies have shown that MRI-PDFF correlates with MRS-PDFF. The aim of this study was to show the utility of MRI-PDFF in assessing quantitative changes in liver fat through a three-way comparison of MRI-PDFF and MRS-PDFF with the liver histology-determined steatosis grade at two time points in patients with nonalcoholic fatty liver disease (NAFLD). Fifty patients with biopsy-proven NAFLD who participated in a randomized trial underwent a paired evaluation with liver biopsy, MRI-PDFF, and MRS-PDFF at the baseline and 24 weeks. The mean age and body mass index were 47.8 ± 11.7 years and 30.7 ± 6.5 kg/m(2), respectively. MRI-PDFF showed a robust correlation with MRS-PDFF both at week 0 and at week 24 (r = 0.98, P < 0.0001 for both). Cross-sectionally, MRI-PDFF and MRS-PDFF increased with increases in the histology-determined steatosis grade both at week 0 and at week 24 (P < 0.05 for all). Longitudinally, patients who had a decrease (≥ 1%) or increase (≥ 1%) in MRI-PDFF (confirmed by MRS-PDFF) showed a parallel decrease or increase in their body weight and serum alanine aminotransferase and aspartate aminotransferase levels at week 24 (P < 0.05). This small increase or decrease in liver fat could not be quantified with histology.
Conclusion: In this longitudinal study, MRI-PDFF correlated well with MRS-PDFF and was more sensitive than the histology-determined steatosis grade in quantifying increases or decreases in the liver fat content. Therefore, it could be used to quantify changes in liver fat in future clinical trials.
© 2013 by the American Association for the Study of Liver Diseases.
Conflict of interest statement
Potential conflict of interest: Dr. Sirlin consults for Bayer. Dr. Middleton received grants from Isis, Genzyme, Sanofi, Merck, GE, Siemens, Gilead, Pfizer, Synageva, Biomedical Systems, Bioclinica, Profil, and Takeda.
Figures
Comment in
-
Emerging quantitative magnetic resonance imaging biomarkers of hepatic steatosis.Hepatology. 2013 Dec;58(6):1877-80. doi: 10.1002/hep.26543. Epub 2013 Oct 11. Hepatology. 2013. PMID: 23744793 Free PMC article. No abstract available.
References
-
- Lazo M, Clark JM. The epidemiology of nonalcoholic fatty liver disease: a global perspective. Semin Liver Dis. 2008;28:339–350. - PubMed
-
- Kim WR, Brown RS, Jr, Terrault NA, El-Serag H. Burden of liver disease in the United States: summary of a workshop. Hepatology. 2002;36:227–242. - PubMed
-
- Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40:1387–1395. - PubMed
-
- Gupta R, Bhangoo A, Matthews NA, Anhalt H, Matta Y, Lamichhane B, et al. The prevalence of non-alcoholic fatty liver disease and metabolic syndrome in obese children. J Pediatr Endocrinol Metab. 2011;24:907–911. - PubMed
-
- Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology. 2012;142:711–725. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical