Structural basis of HCV neutralization by human monoclonal antibodies resistant to viral neutralization escape
- PMID: 23696737
- PMCID: PMC3656090
- DOI: 10.1371/journal.ppat.1003364
Structural basis of HCV neutralization by human monoclonal antibodies resistant to viral neutralization escape
Abstract
The high mutation rate of hepatitis C virus allows it to rapidly evade the humoral immune response. However, certain epitopes in the envelope glycoproteins cannot vary without compromising virus viability. Antibodies targeting these epitopes are resistant to viral escape from neutralization and understanding their binding-mode is important for vaccine design. Human monoclonal antibodies HC84-1 and HC84-27 target conformational epitopes overlapping the CD81 receptor-binding site, formed by segments aa434-446 and aa610-619 within the major HCV glycoprotein E2. No neutralization escape was yet observed for these antibodies. We report here the crystal structures of their Fab fragments in complex with a synthetic peptide comprising aa434-446. The structures show that the peptide adopts an α-helical conformation with the main contact residues F⁴⁴² and Y⁴⁴³ forming a hydrophobic protrusion. The peptide retained its conformation in both complexes, independently of crystal packing, indicating that it reflects a surface feature of the folded glycoprotein that is exposed similarly on the virion. The same residues of E2 are also involved in interaction with CD81, suggesting that the cellular receptor binds the same surface feature and potential escape mutants critically compromise receptor binding. In summary, our results identify a critical structural motif at the E2 surface, which is essential for virus propagation and therefore represents an ideal candidate for structure-based immunogen design for vaccine development.
Conflict of interest statement
We have read the journal's policy and have the following conflicts. FAR received recurrent funding from Merck-Serono. The funders did not participate in the design and conduct of the study; collection, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript. This funding does not alter our adherence to all PLOS Pathogens policies on sharing data and materials. The other authors declare that they have no conflict of interest.
Figures




References
-
- Lemon SM, Walker CM, Alter MJ, Yi MK (2007) Hepatitis C Virus. Fields Virology, Fifth edition 1253–1304.
-
- Verna EC, Brown RS Jr (2008) Hepatitis C and liver transplantation: enhancing outcomes and should patients be retransplanted. Clin Liver Dis 12: 637–659, ix–x. - PubMed
-
- Simmonds P, Bukh J, Combet C, Deléage G, Enomoto N, et al. (2005) Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology (Baltimore, Md) 42: 962–973. - PubMed
-
- Kwo PY, Lawitz EJ, McCone J, Schiff ER, Vierling JM, et al. (2010) Efficacy of boceprevir, an NS3 protease inhibitor, in combination with peginterferon alfa-2b and ribavirin in treatment-naive patients with genotype 1 hepatitis C infection (SPRINT-1): an open-label, randomised, multicentre phase 2 trial. The Lancet 376: 705–716. - PubMed
-
- McHutchison JG, Manns MP, Muir AJ, Terrault NA, Jacobson IM, et al. (2010) Telaprevir for previously treated chronic HCV infection. New England Journal of Medicine 362: 1292–1303. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases