Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 16;8(5):e63300.
doi: 10.1371/journal.pone.0063300. Print 2013.

A "candidate-interactome" aggregate analysis of genome-wide association data in multiple sclerosis

Collaborators, Affiliations

A "candidate-interactome" aggregate analysis of genome-wide association data in multiple sclerosis

Rosella Mechelli et al. PLoS One. .

Abstract

Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a "candidate interactome" (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Heatmap from Ingenuity Pathway Analysis of each interactome.
Statistical significance (in –log[p-value] notation, where p<0.05 corresponds to a –log[p]>1.3) of the functional components in each interactome, as obtained through a Comparative Core-Analysis in IPA (Ingenuity Pathway Analysis). The functional components identified at the molecular and cellular level are presented row-wise (right); the interactomes are presented column-wise (bottom). Each cell in position (i,j) contains a number that represents in −log notation the strength of the association between the functional class i and the interactome j; this information is also color-matched with a color gradient that moves from white (−log[p] = 0.0, p = 1) to crimson (−log[p] = 50, p<10−50). Two hierarchical cluster analyses were employed to group functional classes that share similar patterns of associations across all interactomes (left-side clustering), and to group interactomes that share similar functional compositions (top-chart clustering).
Figure 2
Figure 2. Heatmap from Ingenuity Pathway Analysis of MS-associated interactomes.
Statistical significance (in –log[p-value] notation, where p<0.05 corresponds to a –log[p]>1.3) of the functional components in each one of the three MS-associated interactomes (Table S3) computed by ALIGATOR (Association LIst Go AnnoTatOR) first flow process. These p-values were obtained through a Comparative Core-Analysis in IPA (Ingenuity Pathway Analysis). The functional components identified at the molecular and cellular level are presented row-wise; the interactome sub-sets are presented column-wise. Each cell in position (i,j) contains a number that represents in −log notation the strength of the association between the functional class i and the interactome; this information is also color-matched with a color gradient that moves from white (−log[p] = 0.0, p = 1) to crimson (−log[p] = 14, p<10−14). Two hierarchical cluster analyses were employed to group functional classes that share similar patterns of associations across all interactome sub-sets (left-side clustering), and to group interactome sub-sets that share similar functional compositions (top-chart clustering).
Figure 3
Figure 3. Histograms of functional class distribution of MS-associated interactomes.
The histograms show the strength of the association between each IPA functional class and the 3 MS-associated interactomes (EBV [A], HIV [B] and HBV [C]). For each functional class 3 values were derived according to its distribution before (Figure 1) and after (Figure 2, with and without MHC [Major histocompatibility complex]) the ALIGATOR (Association LIst Go AnnoTatOR) statistical analysis of association.

References

    1. International Multiple Sclerosis Genetics Consortium & Wellcome Trust Case Control Consortium,2 (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476: 214–19. - PMC - PubMed
    1. Kakalacheva K, Lünemann JD (2011) Environmental triggers of multiple sclerosis. FEBS Lett 585: 3724–29. - PubMed
    1. Sawcer S, Wason J (2012) Risk in complex genetics: “All models are wrong but some are useful”. Ann Neurol 72: 502–9. - PubMed
    1. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era - concepts and misconceptions. Nat Rev Genet 9: 255–266. - PubMed
    1. Gulbahce N, Yan H, Dricot A, Padi M, Byrdsong D, et al. (2012) Viral perturbations of host networks reflect disease etiology. PLoS Comput Biol 8: e1002531. - PMC - PubMed

Publication types