Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990;75(2):141-51.
doi: 10.1016/0009-2797(90)90114-3.

Mechanisms of chromium toxicity in mitochondria

Affiliations

Mechanisms of chromium toxicity in mitochondria

D Ryberg et al. Chem Biol Interact. 1990.

Abstract

The oxygen consumption of isolated rat heart mitochondria was potently depressed in presence of 10-50 microM Na2CrO4 when NAD-linked substrates were oxidized. The succinate stimulated respiration and the oxidation of exogeneous NADH in sonicated mitochondria were not affected by chromate at this concentration range. A rapid and persistent drop (40% in 2 min) in the mitochondrial NADH level was observed after chromate addition (30 microM) under conditions which generally should promote regeneration of NADH. Experiments with bis-(2-ethyl-2-hydroxybutyrato)oxochromate(V) and vanadyl induced reduction of Cr(VI) in presence of excess NADH were performed. These experiments indicated that NADH may be directly oxidized by Cr(V) at physiological pH. The activity of 10 different enzymes were measured after lysis of intact mitochondria pretreated with chromate (1-100 microM). Na2CrO4 at a very low level (3-5 microM) was sufficient for 50% inhibition of alpha-ketoglutarate dehydrogenase. Higher concentrations (20-70 microM) was necessary for similar effect on beta-hydroxybutyrate and pyruvate dehydrogenase. The other enzymes tested were unaffected. Thus, the chromate toxicity in mitochondria may be due to NADH depletion as a result of direct oxidation by Cr(V) as well as reduced formation of NADH due to specific enzyme inhibition.

PubMed Disclaimer

LinkOut - more resources