Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990;75(2):201-11.
doi: 10.1016/0009-2797(90)90118-7.

N-acetyl-p-benzoquinone imine-induced changes in the energy metabolism in hepatocytes

Affiliations

N-acetyl-p-benzoquinone imine-induced changes in the energy metabolism in hepatocytes

B S Andersson et al. Chem Biol Interact. 1990.

Abstract

The effect of N-acetyl-p-benzoquinone imine (NAPQI), a reactive metabolite of acetaminophen, on the energy metabolism in isolated hepatocytes was investigated. Incubation of cells with NAPQI (400 microM) resulted in an immediate uptake into the mitochondria, followed by both reduction and glutathione conjugation of the quinone imine. These reactions were extremely rapid and were associated with depletion of the mitochondrial ATP content (greater than 80% depletion after 1 min exposure). The loss of ATP was accompanied by increases in ADP and AMP, as well as NADP. No effect on mitochondrial NAD was observed during this initial phase. Similar alterations were produced by NAPQI in the cytosolic compartment. Furthermore, incubation of hepatocytes with NAPQI inhibited oxygen consumption by nearly 90% within 10 s. In parallel to these biochemical changes, there was marked bleb formation on the surface of the hepatocytes, which was found to precede cell death (trypan blue uptake). In conclusion, our results demonstrate that during exposure of hepatocytes to NAPQI, dramatic changes in cellular energy metabolism occur. These biochemical alterations may be caused by a rapid decrease in mitochondrial function, and they may play an important role in the initiation of NAPQI-induced cytotoxicity.

PubMed Disclaimer

Publication types

LinkOut - more resources