Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2013 Jul;54(7):1106-12.
doi: 10.2967/jnumed.112.111120. Epub 2013 May 22.

Comparison of 18F-fluoroazomycin-arabinofuranoside and 64Cu-diacetyl-bis(N4-methylthiosemicarbazone) in preclinical models of cancer

Affiliations
Free article
Comparative Study

Comparison of 18F-fluoroazomycin-arabinofuranoside and 64Cu-diacetyl-bis(N4-methylthiosemicarbazone) in preclinical models of cancer

Silvia Valtorta et al. J Nucl Med. 2013 Jul.
Free article

Abstract

Hypoxic regions are present in different types of cancer and are a negative prognostic factor for disease progression and response to therapy. (18)F-fluoroazomycin-arabinofuranoside ((18)F-FAZA) and (64)Cu-diacetyl-bis(N4-methylthiosemicarbazone) ((64)Cu-ATSM) have been widely used to visualize hypoxic regions in preclinical and clinical studies. Although both these radioligands have high signal-to-noise ratios, (64)Cu-ATSM may be suitable for use in in vivo imaging and as a radiotherapeutic agent. Despite encouraging results suggesting that it may have a role as a prognostic tracer, (64)Cu-ATSM was recently shown to display cell line-dependent kinetics of oxygen-dependent uptake. We set out to evaluate the kinetics of (64)Cu-ATSM distribution in different cancer models, using (18)F-FAZA as the gold standard.

Methods: (18)F-FAZA and (64)Cu-ATSM uptake were compared ex vivo using dual-tracer autoradiography and in vivo using PET in different xenograft mouse models (FaDu, EMT-6, and PC-3). (18)F-FAZA uptake was compared with (64)Cu-ATSM uptake in PET studies acquired at early (2 h after injection) and delayed time points (24 h after injection). To evaluate the presence of hypoxia and copper pumps, the tumors from animals submitted to PET were harvested and analyzed by an immunohistochemical technique, using antibodies against carbonic anhydrase IX (CAIX) and copper pumps (Ctr1 and ATP7B).

Results: (64)Cu-ATSM showed a higher tumor-to-muscle ratio than did (18)F-FAZA. In the FaDu mouse model, radioactivity distribution profiles were overlapping irrespective of the hypoxic agent injected or the time of (64)Cu acquisition. Conversely, in the EMT-6 and PC-3 models there was little similarity between the early and delayed (64)Cu-ATSM images, and both the radiotracers showed a heterogeneous distribution. The microscopic analysis revealed that (18)F-FAZA-positive areas were also positive for CAIX immunostaining whereas immunolocalization for copper pumps in the 3 models was not related to radioactivity distribution.

Conclusion: The results of this study confirm the cell-dependent distribution and retention kinetics of (64)Cu-ATSM and underline the need for proper validation of animal models and PET acquisition protocols before exploration of any new clinical applications.

Keywords: 18F-FAZA; 64Cu-ATSM; PET imaging; tumor hypoxia.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources