Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013:67:65-81.
doi: 10.1146/annurev-micro-092412-155708. Epub 2013 May 20.

Mechanisms of acid resistance in Escherichia coli

Affiliations
Review

Mechanisms of acid resistance in Escherichia coli

Usheer Kanjee et al. Annu Rev Microbiol. 2013.

Abstract

Adaptation to acid stress is an important factor in the transmission of intestinal microbes. The enterobacterium Escherichia coli uses a range of physiological, metabolic, and proton-consuming acid resistance mechanisms in order to survive acid stresses as low as pH 2.0. The physiological adaptations include membrane modifications and outer membrane porins to reduce proton influx and periplasmic and cytoplasmic chaperones to manage the effects of acid damage. The metabolic acid resistance systems couple proton efflux to energy generation via select components of the electron transport chain, including cytochrome bo oxidase, NADH dehydrogenase I, NADH dehydrogenase II, and succinate dehydrogenase. Under anaerobic conditions the formate hydrogen lyase complex catalyzes conversion of cytoplasmic protons to hydrogen gas. Finally, each major proton-consuming acid resistance system has a pyridoxal-5'-phosphate-dependent amino acid decarboxylase that catalyzes proton-dependent decarboxylation of a substrate amino acid to product and CO2, and an inner membrane antiporter that exchanges external substrate for internal product.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources