AKT upregulates B-Raf Ser445 phosphorylation and ERK1/2 activation in prostate cancer cells in response to androgen depletion
- PMID: 23701950
- PMCID: PMC3699957
- DOI: 10.1016/j.yexcr.2013.05.008
AKT upregulates B-Raf Ser445 phosphorylation and ERK1/2 activation in prostate cancer cells in response to androgen depletion
Abstract
Upregulated ERK1/2 activity is often correlated with AKT activation during prostate cancer (PCa) progression, yet their functional relation needs elucidation. Using androgen-deprived LNCaP cells, in which ERK1/2 activation occurs in strong correlation with AKT activation, we found that AKT-mediated B-Raf regulation is necessary for ERK1/2 activation. Specifically, in response to androgen deprivation, AKT upregulated B-Raf phosphorylation at Ser445 without affecting A-Raf or C-Raf-1. This effect of AKT was abolished by Arg25 to Ala mutation or truncating (∆4-129) the pleckstrin homology domain of AKT, indicating that the canonical AKT regulation is important for this signaling. Intriguingly, although a constitutively active AKT containing N-terminal myristoylation signal could sufficiently upregulate B-Raf phosphorylation at Ser445 in LNCaP cells, subsequent MEK/ERK activation still required hormone deprivation. In contrast, AKT activity was sufficient to induce not only B-Raf phosphorylation but also MEK/ERK activation in the hormone refractory LNCaP variant, C4-2. These data indicate that androgen depletion may induce MEK/ERK activation through a synergy between AKT-dependent and -independent mechanisms and that the latter may become deregulated in association with castration resistance. In support, consistent AKT-mediated B-Raf regulation was also detected in a panel of PCa lines derived from the cPten(-/-)L mice before and after castration. Our results also demonstrate that AKT regulates androgen receptor levels partly via the Raf/MEK/ERK pathway. This study reveals a novel crosstalk between ERK1/2 and AKT in PCa cells.
Copyright © 2013 Elsevier Inc. All rights reserved.
Figures
References
-
- Chen L, Siddiqui S, Bose S, Mooso B, Asuncion A, Bedolla RG, Vinall R, Tepper CG, Gandour-Edwards R, Shi X, Lu XH, Siddiqui J, Chinnaiyan AM, Mehra R, Devere White RW, Carraway KL, 3rd, Ghosh PM. Nrdp1-mediated regulation of ErbB3 expression by the androgen receptor in androgen-dependent but not castrate-resistant prostate cancer cells. Cancer research. 2010;70:5994–6003. - PMC - PubMed
-
- Yuan TC, Veeramani S, Lin MF. Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocrine-related cancer. 2007;14:531–547. - PubMed
-
- Sun Y, Wang BE, Leong KG, Yue P, Li L, Jhunjhunwala S, Chen D, Seo K, Modrusan Z, Gao WQ, Settleman J, Johnson L. Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer research. 2012;72:527–536. - PubMed
-
- Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocrine reviews. 2004;25:276–308. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous
