Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jul 8;297(2):227-38.
doi: 10.1002/cne.902970206.

Early axon and dendritic outgrowth of spinal accessory motor neurons studied with DiI in fixed tissues

Affiliations

Early axon and dendritic outgrowth of spinal accessory motor neurons studied with DiI in fixed tissues

W D Snider et al. J Comp Neurol. .

Abstract

We have utilized lateral diffusion of DiI in fixed tissues (Godement et al., '87: Development 101: 697-713) to study early axon and dendritic outgrowth of spinal accessory motor neurons in embryonic rats. Crystals were placed in the central canal of the cervical spinal cord near the ventral commissure in order to label growing accessory axons anterogradely and on the spinal accessory nerve to label somata and dendrites retrogradely. Animals were studied on E11-E13. We show here that it is possible to stain axonal and dendritic processes from the earliest stages of motor neuron differentiation by using DiI. Our results demonstrate that, unlike axons of other cervical motor neurons, accessory axons traverse the lateral region of the embryonic cord, which consists of neuroepithelial endfeet. Thus an affinity for neuroepithelial endfeet could partially explain their unusual intraspinal trajectory. We also show that morphology of the spinal accessory growth cones differs according to position along the accessory nerve pathway. Finally, we show that accessory motor neuron axons are in the region of their target precursors prior to the initiation of dendritic arborization. Use of DiI in fixed tissue allows study of process outgrowth in mammalian spinal cord with detail previously obtainable only in nonmammalian vertebrates.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources