Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 May;102(5):1625-40.
doi: 10.1002/jbm.a.34806. Epub 2013 Jul 1.

Coronary drug-eluting stents: from design optimization to newer strategies

Affiliations
Review

Coronary drug-eluting stents: from design optimization to newer strategies

Daming Sun et al. J Biomed Mater Res A. 2014 May.

Abstract

Compared with early bare-metal stents, drug-eluting stents (DESs) are more effective in treating coronary artery diseases, especially in inhibiting restenosis. However, in-stent restenosis still clinically occurs at a non-negligible rate. More importantly, delayed endothelialization, inflammation, and hypersensitivity trigger subacute or late adverse events, particularly stent thrombosis, and thereby raise more concerns over the long-term safety of DESs. These problems are mostly associated with the permanent polymeric materials, non-optimal therapeutic drugs, and/or metallic stent platforms used in current DES design. It is critically important to further improve and optimize DES design and apply newer strategies for developing next generation DES. These new generation DESs should maintain their clinical efficacy and meanwhile eliminate the long-term safety concerns. In this review article, the current information on the optimization of DES design was critically reviewed based on DES's basic components, namely, stent platform, restenotic drug, and polymer coating. The available strategies for designing next-generation DESs were also summarized, ranging from degradable polymer DESs, to polymer-free DESs, to fully biodegradable DESs.

Keywords: biodegradable stent; drug-eluting stent; in-stent restenosis; stent thrombosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources