Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 21;8(5):e63849.
doi: 10.1371/journal.pone.0063849. Print 2013.

Insecticide resistance alleles affect vector competence of Anopheles gambiae s.s. for Plasmodium falciparum field isolates

Affiliations

Insecticide resistance alleles affect vector competence of Anopheles gambiae s.s. for Plasmodium falciparum field isolates

Haoues Alout et al. PLoS One. .

Abstract

The widespread insecticide resistance raises concerns for vector control implementation and sustainability particularly for the control of the main vector of human malaria, Anopheles gambiae sensu stricto. However, the extent to which insecticide resistance mechanisms interfere with the development of the malignant malaria parasite in its vector and their impact on overall malaria transmission remains unknown. We explore the impact of insecticide resistance on the outcome of Plasmodium falciparum infection in its natural vector using three An. gambiae strains sharing a common genetic background, one susceptible to insecticides and two resistant, one homozygous for the ace-1(R) mutation and one for the kdr mutation. Experimental infections of the three strains were conducted in parallel with field isolates of P. falciparum from Burkina Faso (West Africa) by direct membrane feeding assays. Both insecticide resistant mutations influence the outcome of malaria infection by increasing the prevalence of infection. In contrast, the kdr resistant allele is associated with reduced parasite burden in infected individuals at the oocyst stage, when compared to the susceptible strain, while the ace-1 (R) resistant allele showing no such association. Thus insecticide resistance, which is particularly problematic for malaria control efforts, impacts vector competence towards P. falciparum and probably parasite transmission through increased sporozoite prevalence in kdr resistant mosquitoes. These results are of great concern for the epidemiology of malaria considering the widespread pyrethroid resistance currently observed in Sub-Saharan Africa and the efforts deployed to control the disease.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Prevalence of oocysts for each An. gambiae strain.
Panel A shows histograms presenting the prevalence of oocyst-infected females for each mosquito strain and for each feeding assay. The gametocyte density for each blood donor (/µl of blood) is indicated in brackets. Panel B presents the mean prevalence for each mosquito strain among all 6 feeding assays. Bars above and below the means represent the standard errors of the mean. Tests of significance were corrected for multiple testing using the Bonferroni procedure. Stars indicate the significance level: one star for p<0.05; two stars for p<0.01; three stars for p<0.001.
Figure 2
Figure 2. Prevalence of sporozoites for each An. gambiae strain.
Panel A shows histograms presenting the prevalence of sporozoite-infected females for each mosquito strain and for each feeding assay. The gametocyte density for each blood donor (/µl of blood) is indicated in brackets. Panel B presents the mean prevalence for each mosquito strain among all 6 feeding assays. Bars above and below the means represent the standard errors of the mean. Tests of significance were corrected for multiple testing using the Bonferroni procedure. Stars indicate the significance level: one star for p<0.05; two stars for p<0.01; three stars for p<0.001.
Figure 3
Figure 3. Oocyst burden for each An. gambiae strain.
Number of oocysts per female midgut is presented as a scatter dot plot for each mosquito strain and for each feeding assay (panel A); and for each mosquito strain among all 6 feeding assays (panel B). The gametocyte density for each blood donor (/µl of blood) is indicated in brackets. Bars above and below the means represent the standard errors of the mean. Tests of significance were corrected for multiple testing using the Bonferroni procedure. Stars indicate the significance level: one star for p<0.05; two stars for p<0.01; three stars for p<0.001.
Figure 4
Figure 4. Influence of mosquito wing length on oocyst burden.
Oocyst number was presented as a scatter dot plot with the corresponding mean for individuals grouped by wing length. Bars above and below the means represent the standard errors of the mean.
Figure 5
Figure 5. Relative quantity of P. falciparum sporozoite genome over that of An. gambiae genome.
Panel A shows histograms presenting the ratio of sporozoite genome over that of mosquito genome for each mosquito strain and for each feeding assay. The gametocyte density for each blood donor (/µl of blood) is indicated in brackets. Panel B presents the ratio of sporozoite genome over that of mosquito genome for each mosquito strain among all 6 feeding assays. Bars above and below the means represent the standard errors of the mean. Tests of significance were corrected for multiple testing using the Bonferroni procedure. Stars indicate the significance level: one star for p<0.05; two stars for p<0.01; three stars for p<0.001.

References

    1. WHO (2011) World Malaria Report. Available: http://www.who.int/entity/malaria/world_malaria_report_2011/978924156440....
    1. Diabaté A, Baldet T, Chandre F, Akogbéto M, Guiguemde TR, et al. (2002) The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.l. in Burkina Faso. Am J Trop Med Hyg 67: 617–622. - PubMed
    1. Lines JD (1988) Do agricultural insecticides select for insecticide resistance in mosquitoes? A look at the evidence. Parasitol today 4: S17–S20. - PubMed
    1. Labbé P, Alout H, Djogbénou L, Weill M, Pasteur N (2011) Evolution of Resistance to Insecticide in Disease Vectors. In: Tibayrenc M, editor. Genetics and Evolution of Infectious Diseases. Elsevier Inc. 363–409.
    1. Weill M, Lutfalla G, Mogensen K, Chandre F, Berthomieu A, et al. (2003) Insecticide resistance in mosquito vectors. Nature 7: 7–8. - PubMed

Publication types