Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Feb;24(2):407-15.

[Effects of water and nitrogen management modes on the leaf photosynthetic characters and yield formation of cotton with under-mulch drip irrigation]

[Article in Chinese]
Affiliations
  • PMID: 23705385

[Effects of water and nitrogen management modes on the leaf photosynthetic characters and yield formation of cotton with under-mulch drip irrigation]

[Article in Chinese]
Hong-Hai Luo et al. Ying Yong Sheng Tai Xue Bao. 2013 Feb.

Abstract

Taking different genotype cotton varieties as test materials, a soil column culture experiment was conducted to study the effects of water and nitrogen management modes on the photosynthetic characters and yield formation of cotton with under-mulch drip irrigation in Xinjiang, Northwest China. Under the management mode W4N2, i.e., pre-sowing irrigation + limited drip irrigation before full-flowering + abundant drip irrigation after full-flowering in combining with basal 20% N + topdressing 80% N, the chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (gs) , actual photochemical efficiency of photosystem II (Psi PSII), and photochemical quenching coefficient (qp) at full-flowering stage all decreased significantly, the non-photochemical quenching (NPQ) increased, and the aboveground dry matter accumulation was inhibited, as compared with those under common drip irrigation. From full-flowering stage to boll-opening stage, the chlorophyll content, gs, Pn, Psi PSII, and qp increased with increasing water and nitrogen supply, and the aboveground dry matter accumulation was enhanced by compensation, which benefited the translocation and distribution of photosynthates to seed cotton. Under the fertilization mode of basal 20% N + topdressing 80% N, the seed cotton yield of Xinluzaol3 was the highest in treatment pre-sowing irrigation + common drip irrigation (W3), but that of Xinluzao43 was the highest in treatment pre-sowing irrigation + limited drip irrigation before full-flowering + abundant drip irrigation after full-flowering (W4). It was concluded that under the condition of pre-sowing irrigation, to appropriately decrease the water and nitrogen supply before full-flowering stage and increase the water and nitrogen supply at middle and late growth stages could extend the active photosynthesis duration and promote the photosynthates allocation to reproductive organ, which would fully exploit the yield-increasing potential of cotton with under-mulch drip irrigation.

PubMed Disclaimer

Similar articles

Cited by

Publication types