Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 24:12:47.
doi: 10.1186/1476-4598-12-47.

The interaction of celecoxib with MDR transporters enhances the activity of mitomycin C in a bladder cancer cell line

Affiliations

The interaction of celecoxib with MDR transporters enhances the activity of mitomycin C in a bladder cancer cell line

Vincenzo Pagliarulo et al. Mol Cancer. .

Abstract

Background: An in vitro model was developed to understand if celecoxib could synergize with Mitomycin C (MMC), commonly used for the prevention of non-muscle invasive bladder cancer recurrence, and eventually elucidate if the mechanism of interaction involves multi drug resistance (MDR) transporters.

Methods: UMUC-3, a non COX-2 expressing bladder cancer cell line, and UMUC-3-CX, a COX-2 overexpressing transfectant, as well as 5637, a COX-2 overexpressing cell line, and 5637si-CX, a non COX-2 expressing silenced 5637 cell line, were used in the present study. The expression of COX-2 and MDR pumps (P-gp, MDR-1 and BCRP) was explored through western blot. The anti-proliferative effect of celecoxib and MMC was studied with MTT test. Three biological permeability assays (Drug Transport Experiment, Substrate Transporter Inhibition, and ATP cell depletion) were combined to study the interaction between MDR transporters and celecoxib. Finally, the ability of celecoxib to restore MMC cell accumulation was investigated.

Results: The anti-proliferative effect of celecoxib and MMC were investigated alone and in co-administration, in UMUC-3, UMUC-3-CX, 5637 and 5637si-CX cells. When administered alone, the effect of MMC was 8-fold greater in UMUC-3. However, co-administration of 1 μM, 5 μM, and 10 μM celecoxib and MMC caused a 2,3-fold cytotoxicity increase in UMUC-3-CX cell only. MMC cytotoxicity was not affected by celecoxib co-administration either in 5637, or in 5637si-CX cells. As a result of all finding from the permeability experiments, celecoxib was classified as P-gp unambiguous substrate: celecoxib is transported by MDR pumps and interferes with the efflux of MMC. Importantly, among all transporters, BCRP was only overexpressed in UMUC-3-CX cells, but not in 5637 and 5637si-CX.

Conclusions: The UMUC-3-CX cell line resembles a more aggressive phenotype with a lower response to MMC compared to the wt counterpart. However, the administration of celecoxib in combination to MMC causes a significant and dose dependent gain of the anti-proliferative activity. This finding may be the result of a direct interaction between celecoxib and MDR transporters. Indeed, BCRP is overexpressed in UMUC-3-CX, but not in UMUC-3, 5637, and 5637si-CX, in which celecoxib is ineffective.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Protein expression levels of COX-2, P-gp, MRP1 and BCRP in UMUC3, UMUC-3-CX, 5637, 5637si-CX, TCCsup, and J82, as determined by western blot. Cell lysates were obtained from exponentially growing cells and subjected to immunoblotting with appropriate antibodies. Immunoblotting with an antibody to β-actin was used to ensure equal loading of proteins in each lane (bottom).
Figure 2
Figure 2
Secretion of prostagladin E2 in the culture medium of a selection of bladder cancer cell lines. PGE2 in cell supernatant was determined by enzyme immunoassay after treatment with or without known concentrations (0 - 1- 5–50 μM) of Celecoxib for 24 and 48 h.
Figure 3
Figure 3
Antiproliferative effect of celecoxib and MMC administered alone at increasing doses (0,1 - 0,5 - 1–5 - 10–30 - 50 μM) (A, B). Antiproliferative effect of MMC alone and in co-administration with known concentrations of celecoxib (C, D). All experiments conducted after 48 h of incubation in 5637 (A, C) and in 5637si-CX (B, D) cells.
Figure 4
Figure 4
Antiproliferative effect of celecoxib and MMC administered alone at increasing doses (0,1 - 0,5 - 1–5 - 10–30 - 50 μM) (A, B). Antiproliferative effect of MMC alone and in co-administration with known concentrations of celecoxib (C, D). All experiments conducted after 48 h of incubation in UMUC-3 (A, C) and in UMUC-3-CX (B, D) cells.
Figure 5
Figure 5
Flow cytometry analysis to study the time course of MMC intracellular accumulation and its modulation by celecoxib in UMUC-3 (A) and UMUC-3-CX (B). In both cases, cells were treated one day with MMC (1.69 μM) or celecoxib (14.2 μM) alone, or with both in co-administration (MMC 1.69 μM + celecoxib 14.2 μM). Celecoxib causes an increase in the intracellular concentration of MMC in UMUC-3-CX, but not in UMUC-3 cells.
Figure 6
Figure 6
Schematic view of the mechanism of calcein cellular retention in the absence (A) and in the presence (B) of an MDR pump substrate, such as celecoxib.

Similar articles

Cited by

References

    1. Sylvester RJ, van der Meijden APM, Oosterlinck W, Witjes JA, Bouffioux C, Donald LD, Newling WW. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol. 2006;49:466–477. doi: 10.1016/j.eururo.2005.12.031. - DOI - PubMed
    1. Babjuk M, Oosterlinck W, Sylvester R, Kaasinen E, Böhle A, Palou-Redorta J, Rouprêt M. European Association of Urology (EAU), EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder, the 2011 update. Eur Urol. 2011;59:997–1008. doi: 10.1016/j.eururo.2011.03.017. - DOI - PubMed
    1. Pawinski A, Sylvester R, Kurth KH, Bouffioux C, van der der Meijden A, Parmar MK, Bijnens L. A combined analysis of european organization for research and treatment of cancer, and medical research council randomized clinical trials for the prophylactic treatment of TaT1 bladder cancer. European organization for research and treatment of cancer genitourinary tract cancer cooperative group and the medical research council working part on superficial bladder cancer. J Urol. 1996;156:1934–1941. doi: 10.1016/S0022-5347(01)65396-5. - DOI - PubMed
    1. Klan R, Loy V, Huland H. Residual tumor discovered in routine second transurethral resection in patients with stage T1 transitional cell carcinoma of the bladder. J Urol. 1991;146:316–318. - PubMed
    1. Divrik RT, Yildirim U, Zorlu F, Ozen H. The effect of repeat transurethral resection on recurrence and progression rates in patients with T1 tumors of the bladder who received intravesical mitomycin: a prospective, randomized clinical trial. J Urol. 2006;175:1641–1644. doi: 10.1016/S0022-5347(05)01002-5. - DOI - PubMed

MeSH terms

Substances