Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jul;123(1):7-16.

Hematological effects of unilateral and bilateral exposures of dogs to 300-kVp X rays

Affiliations
  • PMID: 2371381

Hematological effects of unilateral and bilateral exposures of dogs to 300-kVp X rays

K Baltschukat et al. Radiat Res. 1990 Jul.

Abstract

Accidental exposures to ionizing radiation from external sources usually result in an inhomogeneous dose distribution rather than a homogeneous total-body irradiation (TBI). To study the hematological effects of an inhomogeneous dose distribution, dogs were unilaterally exposed to a beam of 300 kVp X rays (HVL = 3.8 mm Cu) with their left side directed to the source. The entrance and exit surface doses were 3.8 Gy and 0.9 Gy, respectively. Dose measurements performed in bone marrow spaces of various bones revealed a maximum of 3.1 Gy in the head of the left humerus and a minimum of 0.9 Gy in the right iliac crest. Based on survival for granulocyte-macrophage progenitor cells (GM-CFC) determined in different bone marrow sites 24 h after the exposure, the dose-dependent reduction ranged from 0.44 to 16% of the control values. The regeneration of the GM-CFC compartments in the various bone marrow spaces showed patterns which were independent of each other up to Day 28. Values were normal again at Day 125 after exposure. For comparative purposes, three dogs were exposed bilaterally to achieve a homogeneous dose distribution. They received a TBI of 2.4 Gy, which according to previous calculations should have caused the same systemic damage to the GM-CFC compartment as the unilateral exposure. The peripheral blood cell changes, including the GM-CFC, and the colony stimulating activity in the serum showed a similar pattern for both exposures. These findings support the hypothesis that the overall survival fraction of progenitor cells in the bone marrow is the main determinant of the blood cell changes, independent of the anatomical distribution.

PubMed Disclaimer

Publication types

LinkOut - more resources