Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jun;140(12):2597-610.
doi: 10.1242/dev.087890.

Specification of chondrocytes and cartilage tissues from embryonic stem cells

Affiliations
Free article

Specification of chondrocytes and cartilage tissues from embryonic stem cells

April M Craft et al. Development. 2013 Jun.
Free article

Abstract

Osteoarthritis primarily affects the articular cartilage of synovial joints. Cell and/or cartilage replacement is a promising therapy, provided there is access to appropriate tissue and sufficient numbers of articular chondrocytes. Embryonic stem cells (ESCs) represent a potentially unlimited source of chondrocytes and tissues as they can generate a broad spectrum of cell types under appropriate conditions in vitro. Here, we demonstrate that mouse ESC-derived chondrogenic mesoderm arises from a Flk-1(-)/Pdgfrα(+) (F(-)P(+)) population that emerges in a defined temporal pattern following the development of an early cardiogenic F(-)P(+) population. Specification of the late-arising F(-)P(+) population with BMP4 generated a highly enriched population of chondrocytes expressing genes associated with growth plate hypertrophic chondrocytes. By contrast, specification with Gdf5, together with inhibition of hedgehog and BMP signaling pathways, generated a population of non-hypertrophic chondrocytes that displayed properties of articular chondrocytes. The two chondrocyte populations retained their hypertrophic and non-hypertrophic properties when induced to generate spatially organized proteoglycan-rich cartilage-like tissue in vitro. Transplantation of either type of chondrocyte, or tissue generated from them, into immunodeficient recipients resulted in the development of cartilage tissue and bone within an 8-week period. Significant ossification was not observed when the tissue was transplanted into osteoblast-depleted mice or into diffusion chambers that prevent vascularization. Thus, through stage-specific manipulation of appropriate signaling pathways it is possible to efficiently and reproducibly derive hypertrophic and non-hypertrophic chondrocyte populations from mouse ESCs that are able to generate distinct cartilage-like tissue in vitro and maintain a cartilage tissue phenotype within an avascular and/or osteoblast-free niche in vivo.

Keywords: Cartilage; Chondrocyte; Embryonic stem cell; Induced pluripotent stem cell; Paraxial; Somite.

PubMed Disclaimer

Publication types

MeSH terms

Substances