Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Oct;19(10):634-43.
doi: 10.1093/molehr/gat039. Epub 2013 May 28.

New insights on the origin and relevance of aneuploidy in human spermatozoa

Affiliations
Review

New insights on the origin and relevance of aneuploidy in human spermatozoa

C Templado et al. Mol Hum Reprod. 2013 Oct.

Abstract

In humans, the most common chromosomal abnormality is aneuploidy. Because the majority of aneuploid conceptuses die during the early stages of embryonic development, an accurate estimate of the frequency of aneuploidy at conception can only be assessed by directly studying the gametes. The vast majority of aneuploidies arise de novo as a result of sporadic chromosome missegregation in paternal or maternal meiosis. In this review, we present the basic current knowledge about the incidence of aneuploidy in human spermatozoa in the general population and in patient populations where elevated levels of sperm aneuploidy are observed. These include infertile patients, patients with abnormal somatic karyotypes, and individuals exposed to certain environmental/lifestyle hazards. The clinical impact of increased levels of aneuploidy is discussed. We then focus on the non-disjunction mechanisms that cause aneuploidy during spermatogenesis and the factors that predispose to non-disjunction in male germ cells followed by an analysis of the sex differences in the incidence of gamete aneuploidy. Recent meiotic studies using multiplex-FISH on three fertile men have revealed that the frequency of conservative aneuploidy of metaphase II spermatocytes is similar to that observed in non-inseminated oocytes of young women. These findings suggest that the differences in the incidence of aneuploidy between spermatozoa and oocytes are not due to differences in chromosome segregation errors but rather to more effective checkpoint mechanisms in spermatogenesis than in oogenesis.

Keywords: FISH; aneuploidy; meiosis; non-disjunction; spermatozoa.

PubMed Disclaimer

Publication types

LinkOut - more resources