Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jun 12;135(23):8606-15.
doi: 10.1021/ja401846x. Epub 2013 May 30.

Photooxidation of ammonia on TiO2 as a source of NO and NO2 under atmospheric conditions

Affiliations

Photooxidation of ammonia on TiO2 as a source of NO and NO2 under atmospheric conditions

Mulu A Kebede et al. J Am Chem Soc. .

Abstract

Ammonia is the most abundant reduced nitrogen species in the atmosphere and an important precursor in the industrial-scale production of nitric acid. A coated-wall flow tube coupled to a chemiluminescence NOx analyzer was used to study the kinetics of NH3 uptake and NOx formation from photochemistry initiated on irradiated (λ > 290 nm) TiO2 surfaces under atmospherically relevant conditions. The speciation of NH3 on TiO2 surfaces in the presence of surface-adsorbed water was determined using diffuse reflection infrared Fourier transform spectroscopy. The uptake kinetics exhibit an inverse dependence on NH3 concentration as expected for reactions proceeding via a Langmuir-Hinshelwood mechanism. The mechanism of NOx formation is shown to be humidity dependent: Water-catalyzed reactions promote NOx formation up to a relative humidity of 50%. Less NOx is formed above 50%, where increasing amounts of adsorbed water may hinder access to reactive sites, promote formation of unreactive NH4(+), and reduce oxidant levels due to higher OH radical recombination rates. A theoretical study of the reaction between the NH2 photoproduct and O2 in the presence of H2O supports the experimental conclusion that NOx formation is catalyzed by water. Calculations at the MP2 and CCSD(T) level on the bare NH2 + O2 reaction and the reaction of NH2 + O2 in small water clusters were carried out. Solvation of NH2OO and NHOOH intermediates likely facilitates isomerization via proton transfer along water wires, such that the steps leading ultimately to NO are exothermic. These results show that photooxidation of low levels of NH3 on TiO2 surfaces represents a source of atmospheric NOx, which is a precursor to ozone. The proposed mechanism may be broadly applicable to dissociative chemisorption of NH3 on other metal oxide surfaces encountered in rural and urban environments and employed in pollution control applications (selective catalytic oxidation/reduction) and during some industrial processes.

PubMed Disclaimer

Publication types

LinkOut - more resources