Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Sep;99(3):230-7.
doi: 10.1016/j.antiviral.2013.05.007. Epub 2013 May 28.

Type I interferon limits influenza virus-induced acute lung injury by regulation of excessive inflammation in mice

Affiliations

Type I interferon limits influenza virus-induced acute lung injury by regulation of excessive inflammation in mice

Yojiro Arimori et al. Antiviral Res. 2013 Sep.

Abstract

Antiviral immune responses play as a double edged sword in resolution of infection and pathogenesis of acute lung injury caused by infection with highly pathogenic influenza A viruses. Here we show that type I interferons (IFNs) are important in protection against acute influenza A virus infection not only via their antiviral activity but also via their anti-inflammatory activity. IFN α receptor (IFNAR) knock-out (KO) mice exhibited increased mortality and morbidity with higher viral load after infection with influenza virus A/FM/1/47 (H1N1, a mouse-adapted strain) compared with wild-type (WT) mice, though the viruses were finally eliminated in both groups. The levels of proinflammatory cytokines in the lungs were significantly higher, while the level of IL-10 in the lungs was significantly lower in IFNAR KO mice than in WT mice during the course of infection. Restoration of IL-10 during an ongoing virus infection significantly reduced the levels of proinflammatory cytokines and improved mortality of IFNAR KO mice. These results suggest that type I IFNs are responsible not only for direct resolution of viral load but also for suppression of immunopathology caused by influenza A virus through IL-10 production.

Keywords: Acute lung injury; Influenza; Interleukin-10; Type I interferon.

PubMed Disclaimer

Publication types

MeSH terms